scholarly journals Influence of Physical Dimension and Morphological-Dependent Antibacterial Characteristics of ZnO Nanoparticles Coated on Orthodontic NiTi Wires

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mona Gholami ◽  
Mahdiyeh Esmaeilzadeh ◽  
Zahra Kachoei ◽  
Mojgan Kachoei ◽  
Baharak Divband

White spot lesions (WSLs) are one of the adverse effects of fixed orthodontic treatments. They are the primary sign of caries, which means inhibiting this process by antibacterial agents will reverse the procedure. The current study tested the surface modification of nickel-titanium (NiTi) wires with ZnO nanoparticles (NPs), as antimicrobial agents. As the morphology of NPs is one of the most critical factors for their properties, the antibacterial properties of different morphologies of ZnO nanostructures coated on the NiTi wire were investigated. For the preparation of ZnO nanostructures, five coating methods, including chemical vapor deposition (CVD), chemical precipitation method, polymer composite coating, sol-gel synthesis, and electrospinning process, were used. The antibacterial activity of NPs was assessed against Streptococcus mutans by the colony counting method. The obtained results showed that all the samples had antibacterial effects. The antibacterial properties of ZnO NPs were significantly improved when the specific surface area of particles increased, by the ZnO nanocrystals prepared via the CVD coating method.

2019 ◽  
Vol 2 (1) ◽  
pp. 42-52
Author(s):  
Abdur Rehman ◽  
Saira Ahmad ◽  
Abdul Mateen ◽  
Huma Qamar ◽  
Mudaber Ahmad Mubashar ◽  
...  

Nanotechnology is the science, engineering and technology conducted at the scale that ranges between 1-100 nanometers. For the bio-application, evolution of nanotechnology is creating the concern of scientists towards the synthesis of nanoparticles. The nanoparticles have unique characteristics as compare to bulk materials. Zinc oxide (ZnO) is a matchless semiconductor and it has been under investigation due to its wide range of applications in various areas like biomedical, electronics, material science and optics. In the present work synthesis of ZnO nanoparticles was carried out by using simple chemical approach, Sol-gel method for being effective and inexpensive, by employing zinc acetate dehydrate Zn (CH3CO2)2.2H2O as a precursor and sodium hydroxide (NaOH) starch as a constant agent. The structural properties of resultant zinc oxide nanoparticles were investigated by X-ray diffraction (XRD) technique. The XRD data confirmed the hexagonal wurtzite structure of ZnO powder confirmed by JCPDS 36-1451 data. Particles size was calculated by Scherrer formula and calculated size was 30.14 nm. These nanoparticles were investigated for inhibition zone of bacterial strain Escherichia coli, a gram-negative microbe, at various concentrations of ZnO nanoparticles. Zinc oxide nanoparticles were very proficient for inhibition of growth of bacterial strain E. coli. The mechanism of ZnO NPs for antibacterial activity is release of reactive oxygen species which not only hydrolyze cell wall but cell membrane and cellular components as well providing a potential bactericidal effect.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Nataliya Babayevska ◽  
Łucja Przysiecka ◽  
Grzegorz Nowaczyk ◽  
Marcin Jarek ◽  
Martin Järvekülg ◽  
...  

In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF) were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal structure, phase, and elemental compositions, morphology, as well as photoluminescent properties of pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs and their GNF-based composites have the strongest antibacterial properties against Pseudomonas fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or in biomedical applications.


Cerâmica ◽  
2015 ◽  
Vol 61 (360) ◽  
pp. 457-461 ◽  
Author(s):  
V. D. Mote ◽  
Y. Purushotham ◽  
R. S. Shinde ◽  
S. D. Salunke ◽  
B. N. Dole

Abstract Yttrium-doped ZnO nanoparticles were synthesized by co-precipitation method to investigate structural, optical and antibacterial properties. X-ray diffraction analysis confirms hexagonal (wurtzite) structure with average crystallite size between 16 and 30 nm. Optical energy band gap decreaseswith increasing Y-doping concentration. ZnO nanoparticles were found to be highly effective against S. aureus and Y-doped ZnO nanoparticles against E. coli, B. subtilis and S. typhi. Undoped and Y-doped ZnO nanoparticles are good inorganic antimicrobial agents and can be synthesized by cost effective co-precipitation method.


2014 ◽  
Vol 1024 ◽  
pp. 83-86 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifa Bee Abd Hamid ◽  
Khairun Azizi Azizli ◽  
Afza Shafie ◽  
...  

Synthesising zinc oxide nanoparticles to get certain specific characteristics to be applied in Enhanced oil recovery (EOR) is still challenging to date. In this work, zinc oxide (ZnO) nanoparticles were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid. The ZnO crystal and particles morphology and structure were determined using X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). In this study, a microwave oven was used for annealing ZnO without insulating a sample in any casket. The results show that 30 and 40 minutes of annealing and stirring for 1 hour influenced the morphology and size of zinc oxide particles in nanoscale. These parameters could be tailored to generate a range of nanoparticle morphology (agglomerated nanoparticles in a corn-like morphology), a crystal size with the mean size of 70.5 and 74.9 nm and a main growth at the peak [10. EOR experiment were conducted by dispersing 0.10 wt% ZnO NPs in distilled water to form a ZnO nanofluid. Then the fluid was injected into the medium in the 3rd stage of the oil recovery to present EOR stage. It was found that ZnO nanofluid has the ability to extract 8% of the original oil in place (OOIP).


Author(s):  
Saira Sehar ◽  
Amiza Amiza ◽  
I. H Khan

Nanotechnology advancement leads to development of antimicrobial agents like ZnO nanoparticles. These nanoparticle have their main applications in food packaging. when these nanoparticles incorporate into the food surface, it will kill all bacterias residing on the surface and food become free of bacteria. In this way, food can be stored for a long time because its shelf life is improved. Antimicrobial activity of ZnO nanoparticles can be improved by increasing surface area, reducing particle size and large concentration of ZnO –NPS. Antimicrobial activity increases by increasing intensity of UV light. As UV light fall on ZnO nanoparticles, it increases ZnO surface area and hence anrtimicrobial activity will be increased. Exact mechanism of Antimicrobial activity is still unknown but some processes have been presented.


2013 ◽  
Vol 1 (43) ◽  
pp. 5950 ◽  
Author(s):  
Abdulrahman Syedahamed Haja Hameed ◽  
Chandrasekaran Karthikeyan ◽  
Seemaisamy Sasikumar ◽  
Venugopal Senthil Kumar ◽  
Subramanian Kumaresan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gebretinsae Yeabyo Nigussie ◽  
Gebrekidan Mebrahtu Tesfamariam ◽  
Berhanu Menasbo Tegegne ◽  
Yemane Araya Weldemichel ◽  
Tesfakiros Woldu Gebreab ◽  
...  

We report in this paper antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles (NPs) under visible light irradiation synthesized by using a sol-gel method. Structural, morphological, and basic optical properties of these samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrum, and UV-Vis reflectance. Room temperature X-ray diffraction analysis revealed that Ag-doped TiO2 has both rutile and anatase phases, but TiO2 NPs only have the anatase phase. In both ZnO and Ag-doped ZnO NPs, the hexagonal wurtzite structure was observed. The morphologies of TiO2 and ZnO were influenced by doping with Ag, as shown from the SEM images. EDX confirms that the samples are composed of Zn, Ti, Ag, and O elements. UV-Vis reflectance results show decreased band gap energy of Ag-doped TiO2 and Ag-doped ZnO NPs in comparison to that of TiO2 and ZnO. Pathogenic bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, were used to assess the antibacterial activity of the synthesized materials. The reduction in the viability of all the three bacteria to zero using Ag-doped ZnO occurred at 60 μg/mL of culture, while Ag-doped TiO2 showed zero viability at 80 μg/mL. Doping of Ag on ZnO and TiO2 plays a vital role in the increased antibacterial activity performance.


2020 ◽  
pp. 13-20
Author(s):  
Luma Ahmed ◽  
Eitemad S. Fadhil ◽  
Ayad F. Mohammed

This article describes the synthesis of ZnO nanoparticles (Nps) using the co-precipitation method and then calcinated at 500oC for 2 h. The photo activity of ZnO nanoparticles was examined in photo decolorization of methyl green dye under artificial UV -A light. This prepared photocatalyst (ZnO Np) was modified his surface by 2% Ag doped using the photo deposition method under inert gas for 3h. The characterization of undoped and 2% Ag doped ZnO Nps were estimated by Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), and Atomic force microscopy (AFM). In FT-IR analysis, the new peaks occurred around 624-778 cm-1 confirmed the Ag really is doped on prepared ZnO Np. Based on data from XRD, the mean crystal size was reduced with doped the 2% Ag. The AFM images for the prepared photocatalysts ensure that the shapes of all samples are semi-spherical with nanometer size. Series of kinetics experiments were performed for the photocatalytic decolourization of methyl green dye using undoped and 2% Ag doped ZnO nanoparticle and found to be pseudo-first-order kinetics.


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parisa Shafiee ◽  
Mehdi Reisi Nafchi ◽  
Sara Eskandarinezhad ◽  
Shirin Mahmoudi ◽  
Elahe Ahmadi

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.


Sign in / Sign up

Export Citation Format

Share Document