scholarly journals Alginate Oligosaccharide Ameliorates D-Galactose-Induced Kidney Aging in Mice through Activation of the Nrf2 Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Pan ◽  
Wenjing Feng ◽  
Ming Chen ◽  
Hong Luan ◽  
Yi Hu ◽  
...  

Aging is an independent risk factor for the development of age-related progressive kidney injury. As a part of the aging process, kidney aging has been indicated to be associated with oxidative stress-induced damage. Ameliorating oxidative damage is therefore considered a promising strategy for delaying kidney aging. Alginate oligosaccharide (AOS) has been reported to have a wide range of biological and pharmacological activities. However, no studies have focused on the role of AOS in delaying the kidney aging process. In this study, we aimed to evaluate the potential effects of AOS on kidney aging and its possible mechanisms. Subcutaneous injection of D-galactose (D-gal) (200 mg·kg-1·d-1) in C57BL/6J mice for 8 weeks was used to establish the aging model. AOS (200 mg·kg-1·d-1) was administered via oral gavage for the last four weeks. As a result, AOS inhibited the D-gal-induced upregulation of aging markers and significantly improved the kidney index and kidney function of D-gal-induced mice. In addition, AOS ameliorated the degree of tissue damage and fibrosis in the aging kidney. To further explore the potential mechanisms by which AOS attenuates the kidney aging process, the associated oxidative stress-induced damage was analyzed in depth. The data showed that AOS upregulated the expression of Klotho and decreased malondialdehyde levels by increasing the expression of antioxidant enzymes. Furthermore, our results suggested that AOS activated the nuclear factor erythrogen-2 associated factor 2 (Nrf2) pathway by promoting Nrf2 nuclear translocation in aging mice and upregulated the downstream expression of heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). In conclusion, the present study demonstrated that AOS is a promising agent for attenuating kidney aging, and the underlying molecular mechanisms are related to the activation of the Nrf2 signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jiayi Chen ◽  
Fangting He ◽  
Sijing Liu ◽  
Tao Zhou ◽  
Saira Baloch ◽  
...  

Ligustrum robustum is a traditional herbal tea that is widely distributed in southwest China. The health effects of L. robustum are characteristics of clearing heat, antioxidant, inducing resurgence, and improving digestion. However, the molecular mechanisms related to these effects, particularly the antioxidant mechanism, have been seldom reported. The objective of this study was to assess antioxidative capacity of L. robustum, and its protective effects and mechanisms against hydrogen peroxide (H2O2) - induced toxicity in Caco-2 cells. Total phenolic contents, free radical scavenging activity, and reducing capacity of L. robustum were measured. The effects of L. robustum on the cell viability and antioxidant defense system were explored. The expression of nuclear factor E2 related factor 2 (Nrf2) and antioxidant genes: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and glutamate cysteine ligase (GCL) were analyzed by western blot and qPCR. Pretreatment of L. robustum could significantly reduce H2O2-induced toxicity, decrease the level of reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR). By activating the expression of Nrf2 and antioxidant genes (NQO1, HO-1, and GCL), L. robustum exerts cytoprotective effect in Caco-2 cells dealt with H2O2. Therefore, the well-established model of Caco-2 cells demonstrates that L. robustum may modulate the cytoprotective effect against the H2O2-induced oxidative stress through the Nrf2 signaling pathway.



2021 ◽  
Author(s):  
Ling Wang ◽  
Yue-Qin Zeng ◽  
Juan-Hua Gu ◽  
Rui Song ◽  
Peng-Hui Cang ◽  
...  

Abstract Background Diastolic dysfunction is the most common change of diabetic cardiomyopathy (DCM), but there is no effective clinical treatment at present. Oxidative stress plays a crucial role in the pathophysiological process of diabetic diastolic dysfunction including hypertrophy, apoptosis and fibrosis. The novel Oral-edaravone (OED) alleviates oxidative stress by scavenging free radical and may be suitable for the treatment of chronic diseases such as DCM. Methods DCM was induced by high sugar and high fat diet with intraperitoneal injection of streptozotocin (STZ) in rats. OED (3mg/kg/day) was administration for 4 weeks. Cardiac structure and function were measured using transthoracic echocardiography. H9C2 cardiomyocytes with Nrf2 transfection or not were incubated in glucolipotoxicity and treated with OED for 48 hours to further explore the mechanism. Results In type 2 diabetic rats,oral administration of OED for 4 weeks decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD). OED significantly improved E/A ratio and myocardium hypertrophy accompanied by decreased cross-sectional area of cardiomyocytes, proportion of apoptotic cells, collagen volume fractions and depositions of collagen I/III. In H9C2 cells, OED reduced reactive oxygen species (ROS), cell surface area and TUNEL-positive cells induced by glucolipotoxicity. OED remarkably up-regulated the expression of the Nrf2 signaling pathway both in vivo and in vitro, further promoted Nrf2 nuclear translocation and up-regulated nicotinamide adenine dinucleotide phosphate quinone oxidoreductase (NQO1) and heme oxygenase (HO-1). Moreover, Nrf2 gene silencing abolished the protective effect of OED in H9c2 cells. Conclusion Our findings demonstrated that OED treatment has the therapeutic potential to ameliorate diastolic dysfunction of DCM. The effect is mainly achieved by attenuating hyperglycemia and hyperlipidemia-induced cardiomyocytes hypertrophy, apoptosis and fibrosis via activating the Nrf2 signaling pathway.



2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chaoqun Yan ◽  
Xiaoyan Zhang ◽  
Junqiu Miao ◽  
Hongxia Yuan ◽  
Enli Liu ◽  
...  

Oxidative stress-mediated endothelial injury is considered to be involved in the pathogenesis of various cardiovascular diseases. Farrerol, a typical natural flavanone from the medicinal plant Rhododendron dauricum L., has been reported to show protective effects against oxidative stress-induced endothelial injuries in our previous study. However, its action molecular mechanisms and targets are still unclear. In the present study, we determined whether farrerol can interact with glycogen synthase kinase 3β- (GSK-3β-) nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidant response element (ARE) signaling, which is critical in defense against oxidative stress. Our results demonstrated that farrerol could specifically target Nrf2 negative regulator GSK-3β and inhibit its kinase activity. Mechanistic studies proved that farrerol could induce an inhibitory phosphorylation of GSK-3β at Ser9 without affecting the expression level of total GSK-3β protein and promote the nuclear translocation of Nrf2 as well as the mRNA and protein expression of its downstream target genes heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in EA.hy926 cells. Further studies performed with GSK-3β siRNA and specific inhibitor lithium chloride (LiCl) confirmed that GSK-3β inhibition was involved in farrerol-mediated endothelial protection and Nrf2 signaling activation. Moreover, molecular docking and molecular dynamics studies revealed that farrerol could bind to the ATP pocket of GSK-3β, which is consistent with the ATP-competitive kinetic behavior. Collectively, our results firstly demonstrate that farrerol could attenuate endothelial oxidative stress by specifically targeting GSK-3β and further activating the Nrf2-ARE signaling pathway.



2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guosheng Lin ◽  
Dandan Luo ◽  
Jingjing Liu ◽  
Xiaoli Wu ◽  
Jinfen Chen ◽  
...  

The effect of polysaccharides isolated from Dendrobium officinale (DOP) on acetaminophen- (APAP-) induced hepatotoxicity and the underlying mechanisms involved are investigated. Male Institute of Cancer Research (ICR) mice were randomly assigned to six groups: (1) control, (2) vehicle (APAP, 230 mg/kg), (3) N-acetylcysteine (100 mg/kg), (4) 50 mg/kg DOP, (5) 100 mg/kg DOP, and (6) 200 mg/kg DOP. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum and glutathione (GSH), malondialdehyde (MDA), catalase (CAT), total antioxidant capacity (T-AOC), myeloperoxidase (MPO), and reactive oxygen species (ROS) levels in the liver were determined after the death of the mice. The histological examination of the liver was also performed. The effect of DOP on the Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was evaluated using Western blot analysis and real-time polymerase chain reaction (PCR). The results showed that DOP treatment significantly alleviated the hepatic injury. The decrease in ALT and AST levels in the serum and ROS, MDA, and MPO contents in the liver, as well as the increases in GSH, CAT, and T-AOC in the liver, were observed after DOP treatment. DOP treatment significantly induced the dissociation of Nrf2 from the Nrf2−Keap1 complex and promoted the Nrf2 nuclear translocation. Subsequently, DOP-mediated Nrf2 activation triggered the transcription and expressions of the glutamate–cysteine ligase catalytic (GCLC) subunit, glutamate–cysteine ligase regulatory subunit (GCLM), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone 1 (NQO1) in APAP-treated mice. The present study revealed that DOP treatment exerted potentially hepatoprotective effects against APAP-induced liver injury. Further investigation about mechanisms indicated that DOP exerted the hepatoprotective effect by suppressing the oxidative stress and activating the Nrf2−Keap1 signaling pathway.



Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Habib Yaribeygi ◽  
Thozhukat Sathyapalan ◽  
Amirhossein Sahebkar

: Astaxanthin (AST) is a naturally occurring compound isolated from various sources such as fungi, plants, salmon, and crab. However, Haematococcus Pluvialis, a green alga, is the primary source of this beta carotenoid compound. AST has several favourable biological and pharmacological activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetes, hepatoprotective and neuroprotective. Nevertheless, the exact molecular mechanisms of these protective effects of AST are unclear yet. The Nrf2 signaling pathway is one of the critical candidate signaling pathways that may be involved in these beneficial effects of AST. This signaling pathway is responsible for maintaining the redox balance in the physiologic state. Upon nuclear translocation, Nrf2 signaling activates antioxidant enzymes to reduce oxidative stress and protect cells against damage. In the current study, we have reviewed the effects of AST on the Nrf2 signaling pathway, which could potentially be developed as a novel therapeutic approach for the management of various diseases.



2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiaotian Fu ◽  
Dongmei Chen ◽  
Yan Ma ◽  
Weifeng Yuan ◽  
Liqian Zhu

Bovine herpesvirus type 1 (BoHV-1) is a significant cofactor for bovine respiratory disease complex (BRDC), the most important inflammatory disease in cattle. BoHV-1 infection in cell cultures induces overproduction of pathogenic reactive oxygen species (ROS) and the depletion of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a master transcriptional factor regulating a panel of antioxidant and cellular defense genes in response to oxidative stress. In this study, we reported that the virus productive infection in MDBK cells at the later stage significantly decreased the expression levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1) proteins, the canonical downstream targets regulated by Nrf2, inhibited Nrf2 acetylation, reduced the accumulation of Nrf2 proteins in the nucleus, and relocalized nuclear Nrf2 proteins to form dot-like staining patterns in confocal microscope assay. The differential expression of Kelch-like ECH associated protein 1 (KEAP1) and DJ-1 proteins as well as the decreased association between KEAP1 and DJ-1 promoted Nrf2 degradation through the ubiquitin proteasome pathway. These data indicated that the BoHV-1 infection may significantly suppress the Nrf2 signaling pathway. Moreover, we found that there was an association between Nrf2 and LaminA/C, H3K9ac, and H3K18ac, and the binding ratios were altered following the virus infection. Taken together, for the first time, we provided evidence showing that BoHV-1 infection inhibited the Nrf2 signaling pathway by complicated mechanisms including promoting Nrf2 degradation, relocalization of nuclear Nrf2, and inhibition of Nrf2 acetylation.



2016 ◽  
Vol 94 (5) ◽  
pp. 517-525 ◽  
Author(s):  
Jinlian Li ◽  
Yanli Zhang ◽  
Haiyun Luan ◽  
Xuehong Chen ◽  
Yantao Han ◽  
...  

In our previous study, l-carnitine was shown to have cytoprotective effect against hydrogen peroxide (H2O2)-induced injury in human normal HL7702 hepatocytes. The aim of this study was to investigate whether the protective effect of l-carnitine was associated with the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) pathway. Our results showed that pretreatment with l-carnitine augmented Nrf2 nuclear translocation, DNA binding activity and heme oxygenase-1 (HO-1) expression in H2O2-treated HL7702 cells, although l-carnitine treatment alone had no effect on them. Analysis using Nrf2 siRNA demonstrated that Nrf2 activation was involved in l-carnitine-induced HO-1 expression. In addition, l-carnitine-mediated protection against H2O2 toxicity was abrogated by Nrf2 siRNA, indicating the important role of Nrf2 in l-carnitine-induced cytoprotection. Further experiments revealed that l-carnitine pretreatment enhanced the phosphorylation of Akt in H2O2-treated cells. Blocking Akt pathway with inhibitor partly abrogated the protective effect of l-carnitine. Moreover, our finding demonstrated that the induction of Nrf2 translocation and HO-1 expression by l-carnitine directly correlated with the Akt pathway because Akt inhibitor showed inhibitory effects on the Nrf2 translocation and HO-1 expression. Altogether, these results demonstrate that l-carnitine protects HL7702 cells against H2O2-induced cell damage through Akt-mediated activation of Nrf2 signaling pathway.



2020 ◽  
Vol 33 (7) ◽  
pp. 610-619 ◽  
Author(s):  
Peijian Wang ◽  
Yi Yang ◽  
Dan Wang ◽  
Qiyuan Yang ◽  
Jindong Wan ◽  
...  

Abstract BACKGROUND Oxidative stress is known to be associated with the development of diabetes. Cinnamaldehyde (CA) is a spice compound in cinnamon that enhances the antioxidant defense against reactive oxygen species (ROS) by activating nuclear factor erythroid-related factor 2 (Nrf2), which has been shown to have a cardioprotection effect. However, the relationship between CA and Nrf2 in diabetic vascular complications remains unclear. METHODS Leptin receptor-deficient (db/db) mice were fed normal chow or diet containing 0.02% CA for 12 weeks. The vascular tone, blood pressure, superoxide level, nitric oxide (NO) production, renal morphology, and function were measured in each group. RESULTS CA remarkably inhibited ROS generation, preserved NO production, increased phosphorylated endothelial nitric oxide synthase (p-eNOS), attenuated the upregulation of nitrotyrosine, P22 and P47 in aortas of db/db mice, and apparently ameliorated the elevation of type IV collagen, TGF-β1, P22, and P47 in kidney of db/db mice. Feeding with CA improved endothelium-dependent relaxation of aortas and mesenteric arteries, and alleviated the remodeling of mesenteric arteries in db/db mice. Additionally, dietary CA ameliorated glomerular fibrosis and renal dysfunction in diabetic mice. Nrf2 and its targeted genes heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1) were slightly increased in db/db mice and further upregulated by CA. However, these protective effects of CA were reversed in Nrf2 downregulation mice. CONCLUSIONS A prolonged diet of CA protects against diabetic vascular dysfunction by inhibiting oxidative stress through activating of Nrf2 signaling pathway in db/db mice.



2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Youjing Yang ◽  
Qianmin Li ◽  
Shuhui Wei ◽  
Kaimiao Chu ◽  
Lian Xue ◽  
...  

Lung inflammatory injury is a global public health concern. It is characterized by infiltration of diverse inflammatory cells and thickening of pulmonary septum along with oxidative stress to airway epithelial cells. STAT6 is a nuclear transcription factor that plays a crucial role in orchestrating the immune response, but its function in tissue inflammatory injury has not been comprehensively studied. Here, we demonstrated that STAT6 activation can protect against particle-induced lung inflammatory injury by resisting oxidative stress. Specifically, genetic ablation of STAT6 was observed to worsen particle-induced lung injury mainly by disrupting the lungs’ antioxidant capacity, as reflected by the downregulation of the Nrf2 signaling pathway, an increase in malondialdehyde levels, and a decrease in glutathione levels. Vitamin D receptor (VDR) has been previously proved to positively regulate Nrf2 signals. In this study, silencing VDR expression in human bronchial epithelial BEAS-2B cells consistently suppressed autophagy-mediated activation of the Nrf2 signaling pathway, thereby aggravating particle-induced cell damage. Mechanically, STAT6 activation promoted the nuclear translocation of VDR, which increased the transcription of autophagy-related genes and induced Nrf2 signals, and silencing VDR abolished these effects. Our research provides important insights into the role of STAT6 in oxidative damage and reveals its potential underlying mechanism. This information not only deepens the appreciation of STAT6 but also opens new avenues for the discovery of therapies for inflammatory respiratory system disorders.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Dingfu Xiao ◽  
Daixiu Yuan ◽  
Bihui Tan ◽  
Jing Wang ◽  
Yanhong Liu ◽  
...  

Eucommia ulmoides flavones (EUF) have been demonstrated to alleviate oxidative stress and intestinal damage in piglets, but their effect target is still poorly understood. NF-E2-related factor 2 (Nrf2) pathway plays a very important role in the defense mechanism. This study was designed to investigate the regulation of EUF on the Nrf2 pathway and inhibition of Nrf2 on oxidative stress in the intestine of piglets. An in vivo study was conducted in weaned piglets treated with basal diet, basal diet+diquat, and 100 mg/kg EUF diet+diquat for 14 d to determine Nrf2 and Keap1 protein expressions, as well as downstream antioxidant gene mRNA expression. An in vitro study was performed in a porcine jejunal epithelial cell line to investigate the effect of inhibiting Nrf2 on cell growth and intracellular oxidative stress parameters. The results showed that the supplementation of EUF decreased the oxidized glutathione (GSSG) concentration and the ratio of GSSG to glutathione (GSH) but increased the protein expressions of nuclear Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) as well as mRNA expression of heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and glutamate cysteine ligase catalytic subunit (GCLC) in the small intestinal mucosa of diquat-challenged piglets. When Nrf2 was inhibited by using ML385, cell viability, cellular antioxidant activities, expressions of nuclear Nrf2 and Keap1 protein, and downstream antioxidant enzyme (HO-1, NQO-1, and GCLC) mRNA were decreased in paraquat-treated enterocytes. These results showed that the Nrf2 signaling pathway played an important role in EUF-regulating oxidative stress in the intestine of piglets.



Sign in / Sign up

Export Citation Format

Share Document