scholarly journals Comprehensive Evaluation of Salt Tolerance in Asparagus Germplasm Accessions (Asparagus officinalis L.) at Different Growth Stages

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huimin Gao ◽  
Xuhong Zhang ◽  
Yuqin Liang ◽  
Lingdi Dong ◽  
Changzhi Han ◽  
...  

The screening and cultivation of salt-tolerant crops are becoming more and more important owing to the constant increase in the saline soil area worldwide. Asparagus (A. officinalis L.) is a highly nutritious vegetable crop and widely consumed globally for a long time; however, little research has been done on asparagus. In this study, the salt tolerance of 95 asparagus germplasm accessions was evaluated at three growth stages (germination, seedling, and adult stages) under both salt-stressed and control conditions. Results showed that the growth parameters of most germplasm accessions were obviously inhibited by salt stress. The mean value of the seed germination rate at the germination stage decreased by half under salt-stressed conditions, the mean salt-injury index at the seedling stage reached 57.68%, and the fresh weight of the aboveground part (FWA) and the dry weight of the aboveground part (DWA) decreased the most among the traits determined at the adult stage by more than 60%. Our study screened out 30, 19, and 18 tolerant germplasm accessions (including highly salt-tolerant and salt-tolerant germplasm accessions) at the germination stage, seedling stage, and adult stage, respectively. Among them, two germplasm accessions (Ji08-2 and Jx1502) were simultaneously identified to be tolerant in all three growth stages, while other germplasm accessions were tolerant only at one or two stages. Thus, the salt tolerance of asparagus has periodic characteristics and changes throughout the lifecycle, and the identification of salt tolerance at all the main growth stages facilitates adequate assessment and application of tolerant germplasm accessions.

2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2021 ◽  
pp. 312-319
Author(s):  
Abdulwahid Saif ◽  
Aref Al-Shamiri ◽  
Abdulnour Shaher

Abstract M3 derived mutants from two bread wheat varieties, namely, 'Giza 186' and 'Saha 93', were screened for resistance to the rust Ug99 at two locations in Njoro (Kenya) and in Tihama (Yemen). At Tihama, two mutants of 'Giza 186' (G-M2-2010-1-28 and G-M2-2010-41-52) and four mutants of 'Saha 93' (S-M2-2010-16-12, S-M2-2010-21-13, S-M2-2010-22-14 and S-M2-2010-27-15) were seen to be resistant at both seedling and adult stages while their parents were resistant at seedling stage and susceptible at adult stage. In Kenya, the resistance score of the mutants was slightly different from those obtained at Tihama. The mutants G-M2-2010-1-28 and G-M2-2010-41-52 were stable in their level of resistance recorded at Tihama, but only two mutants of 'Saha 93' (S-M2-2010-16-12 and S-M2-2010-27-15) were resistant at both growth stages. S-M2-2010-22-14 and S-M2-2010-21-13 were resistant at the seedling stage while susceptible at adult stage. Further selection on these mutants for yield potential, agronomic performance and yellow rust disease resistance, as well as on selected mutants of both 'Giza 186' and 'Saha 93', at M5-M6 stages identified superior mutant lines compared with the two parents 'Saha 93' and 'Giza 186'. These included the line Erra-010-GM2w-41-52-40, which ranked first in yield (3768 kg/ha), followed by the lines Erra-010-SwM2-16-12-19, Erra-010-GM2w-1-28-18 and Erra-010-SwM2-22-14-6. Moreover, it can be concluded that Erra-010-GM2w-41-52-40 and Erra-010-SwM2-16-12-19 are highly recommended for their resistance to stem and yellow rust diseases as well as for yield potential and preference by farmers. Therefore, efforts are in progress to increase their seeds for dissemination over a wide range of farmers and wheat areas where rust diseases are an epidemic, and for registration of the lines as improved mutant varieties.


2020 ◽  
Author(s):  
Xiu Jing ◽  
Ping Mi ◽  
Xianzhi Xie ◽  
Baoshan Wang

Abstract Background: Salt stress, one of the most important abiotic stresses, severely reduces crop yields. Identifying salt-tolerant rice germplasm resources at the germination stage, developing salt tolerance indicators, and cultivating salt-tolerant rice cultivars are crucial for improving rice production in saline soil.Results: We measured the germination parameters of 140 japonica rice cultivars on the 7 day after sowing (DAS) in 0 and 150 mmol L−1 NaCl. To accurately assess salt tolerance and identify reliable indicators of salt tolerance, we measured the shoot length (SL), root length (RL), root fresh weight (RFW), shoot fresh weight (SFW), total fresh weight (TFW) and salt tolerance (STI) index after 7 days of salt-stress treatment. The 140 rice cultivars were divided into four categories based on the mean MFVs: highly salt tolerant (HST: 19 cultivars), salt tolerant (ST: 74 cultivars), weakly salt tolerant (WST: 43 cultivars), and salt sensitive (SS: 4 cultivars). Based on the physiological indicators, we established a mathematical model to accurately evaluate salt tolerance in japonica rice cultivars. STI of TFW under 150 mmol L−1 NaCl treatment showed the highest correlation with salt tolerance during the germination stage.Conclusions: We determined the optimum NaCl concentration (150 mmol L−1) for evaluating salt tolerance in japonica rice at the germination stage. We identified 19 HST, 74 ST, 43 WST, and 4 SS japonica rice cultivars during the germination stage and proposed a mathematical model to evaluate salt tolerance. STI of TFW is a reliable, accurate indicator for evaluating salt tolerance in japonica rice. These findings should greatly facilitate the evaluation of japonica rice cultivars during seed germination and the breeding of salt-tolerant rice cultivars.


2018 ◽  
Vol 45 (10) ◽  
pp. 1073 ◽  
Author(s):  
Tonglou Ding ◽  
Zhen Yang ◽  
Xiaocen Wei ◽  
Fang Yuan ◽  
Shanshan Yin ◽  
...  

Soil salinity is one of the major abiotic stresses that reduces agricultural productivity and affects large terrestrial areas around the world. Germination is the starting point of the growth and development process of all crops, and it is severely affected by salt stress. Sweet sorghum (Sorghum bicolor (L.) Moench.) is one of the most promising crops that has a relatively high salt tolerance and biomass. However, few studies have evaluated the salt tolerance or screened the reliable evaluation traits of sweet sorghum. In this study, the membership function value of five traits was used as a comprehensive index for the evaluation and selection of salt tolerance in 300 sweet sorghum germplasms. After salt tolerance evaluation, 23 highly salt-tolerant, 38 salt-tolerant, 195 moderately salt-tolerant, 38 salt-sensitive and 6 highly salt-sensitive germplasms during the germination stage were screened. Moreover, the germination index under the 200 mM NaCl treatment showed the highest correlation with salt tolerance during the germination stage. This information can be used for effectively evaluating sweet sorghum during the germination stage. These results are important for the evaluation of the salt tolerance of sweet sorghum germplasms during the germination stage.


2015 ◽  
Vol 43 (2) ◽  
pp. 191-196
Author(s):  
Ensieh Ashrafi ◽  
Morteza Zahedi ◽  
Jamshid Razmjoo

The effect of salt stress on enzyme activities of nine alfalfa cultivars at germination and seedling stage was studied. The activities of SOD, GR, POX and APOX were higher in salt tolerant and lower in salt sensitive cultivars. Results of the effect of salt stress on the SOD, GR, POX, APOX activities and MDA content may be used to select salt tolerance cultivars at the germination and seedling stages. SOD, GR, POX, APOX and MDA may play an important role in salt tolerant mechanisms in alfalfa. DOI: http://dx.doi.org/10.3329/bjb.v43i2.21672 Bangladesh J. Bot. 43(2): 191-196, 2014 (September)


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing-Rui Sun ◽  
Chong-Yun Fu ◽  
Zhi-Lan Fan ◽  
Yu Chen ◽  
Wen-Feng Chen ◽  
...  

Abstract Background Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. Results To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. Conclusion OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Huixian Xing ◽  
Wenguan Zeng ◽  
Jialing Xu ◽  
Lili Mao ◽  
...  

Abstract Background Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. Results In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. Conclusions These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.


1997 ◽  
Vol 37 (6) ◽  
pp. 639 ◽  
Author(s):  
M. E. Rogers ◽  
C. L. Noble ◽  
R. J. Pederick

Summary. The salt tolerance of 29 lines of annual and perennial forage legume species was evaluated in 4 separate experiments over 0–100 mol NaCl/m3 in the greenhouse with the aim of identifying genetic material that is more salt tolerant than the more traditionally grown forage legume species. Several species or lines showed potential as salt-tolerant germplasm including Trifolium tomentosum, 2 lines of T. squamosum and T. alexandrinum cvv. Mescani and Wardan which were all more salt tolerant than T. subterraneum. Two lines of Lotus tenuis and 1 line of L. corniculatus were also relatively salt tolerant. Some of this material had never been assessed before under saline conditions. In contrast, several other species (T. arvense, T. vesiculosum, T. angustifolium and T. pratense) were found to be extremely salt sensitive and/or produced very small amounts of dry matter over all NaCl concentrations. We believe that further selection and field evaluation (including selection for increased productivity and salt tolerance over a range of growth stages) is required for the material that showed potential in order to fully assess its performance under saline soil conditions.


HortScience ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 1280-1287
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Yuejin Weng ◽  
Beiquan Mou ◽  
Ainong Shi

Little has been done with respect to breeding for salt-tolerant cowpea (Vigna unguiculata) cultivars despite of salt stress being a growing threat to cowpea production. Seedling stage is one the most susceptible stages to salt stress in cowpea. Establishing a streamlined methodology for rapidly screening a large number of genotypes will significantly contribute toward enhancing cowpea breeding for salt tolerance. Therefore, the objective of this study was to establish and validate a simple approach for salt tolerance evaluation in cowpea seedlings. A total of 30 genotypes including two controls (PI582468, a salt-tolerant genotype, and PI255774, a salt-sensitive genotype) were greenhouse-grown under 0 mm and 200 mm NaCl. A total of 14 above-ground traits were evaluated. Results revealed: (1) significant differences were observed in average number of dead plants per pot, leaf injury scores, relative salt tolerance (RST) for chlorophyll, plant height, and leaf and stem biomass among the 30 genotypes; (2) all PI255774 plants were completely dead, whereas those of PI582438 were fully green after 2 weeks of salt stress, which validated this methodology; (3) RST for chlorophyll content was highly correlated with number of dead plants and leaf injury scores; (4) RST for leaf biomass was moderately correlated with number of dead plants and leaf injury scores; and (5) RST in plant height was poorly correlated with number of dead plants and leaf injury scores Therefore, less number of dead plants per pot, high chlorophyll content, and less leaf injury scores were good criteria for salt tolerance evaluation in cowpea. This study provided a simple methodology and suggested straightforward criteria to evaluate salt tolerance at seedling stage in cowpea.


Sign in / Sign up

Export Citation Format

Share Document