scholarly journals Investigation and Control of the Blasting-Induced Ground Vibration under Cold Condition

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yingguo Hu ◽  
Zhaowei Yang ◽  
Erlei Yao ◽  
Meishan Liu ◽  
Yu Rao

This paper focuses on the investigation and control of the blasting-induced ground vibration under cold condition. The mechanical performance and wave propagation characteristics of the frozen rock mass are quite different from that of the conventional condition. Laboratory tests were implemented to investigate the wave impedance of rock mass in the frozen, saturated, normal, and drying states. Results reveal the longitudinal wave velocity could be enlarged by 40 percent in the frozen state. Then long-term monitoring of blasting vibration was implemented based on the blasting excavation of the Fengman hydropower station reconstruction project in the north of China. Results demonstrate the PPV and frequency both attenuate much slower when the rock mass is frozen, and the obvious turning points of PPV could be found between different temperatures, where the change of the PPV relationship happens. At last, numerical simulation of the blasting seismic wave attenuation and the response in the protected structure was implemented. The equivalent freezing simulation method was proposed and verified with the site experiment data. Results demonstrate that the attenuation coefficient decreases obviously as the frozen depth of the rock mass increases. The dynamic degree response in structure is much stronger and the maximum charge weight per delay was limited more strictly under the frozen condition. A most adverse frozen depth was determined when the charge weight per delay gets the minimum value. With the above control approaches, a total of 676 blasting was completed in Fengman hydropower station reconstruction and no case of excessive measurement could be found.

2019 ◽  
Vol 56 (7) ◽  
pp. 929-941 ◽  
Author(s):  
Jhon Silva-Castro

Ground vibration prediction and control from mine blasting is a complex task involving disciplines such as geotechnical engineering, explosives engineering, and geology. Despite the importance of controlling ground vibrations, the mining industry commonly uses empirical methodologies based on concepts related to the nuclear tests era (charge weight scaling relationships). Over the past decade, attempts have been made to popularize more elaborate methodologies. These methods range from basic waveform superposition to analytical and numerical methods. Such methodologies are difficult to utilize daily because of their complexity, sometimes low accuracy (despite their sophistication), requirement for difficult to obtain parameters, and time needed to reach solutions using complex algorithms. In this paper, a different methodology to control and predict ground vibrations from blasting is presented. This methodology uses a semi-empirical approach, where the generation and propagation of ground vibration waves and the ground vibration characteristics at a point of interest are considered through the collection of a signature waveform. The methodology allows assessment of the optimum delay between charges to minimize and control ground vibration levels. A case study is included to demonstrate the benefits and the methodology in detail.


2020 ◽  
Vol 10 (18) ◽  
pp. 6195
Author(s):  
Yuanjun Ma ◽  
Changwu Liu ◽  
Ping Wang ◽  
Jun Zhu ◽  
Xianliang Zhou

The transverse cofferdam in Xiangjiaba hydropower station was a water retaining concrete structure with a length of 126 m, a width of 12 m, and a height of 25.2 m, consisting of masonry, plain concrete structure (PC), and roller compacted concrete (RCC), which had to be demolished by blasting after the dam was built. There were many precise instruments nearby the cofferdam which had strict restrictions on blasting vibration. Therefore, the cofferdam was divided into six blasting regions, including land blasting and underwater blasting. Blasting parameters and blasting network structure were accurately designed and continuously optimized through blast-induced vibration test results. At nine measurement points in different locations, 57 blast vibration data were recorded. Consequently, 1386 holes with an explosive weight of 9641.3 kg were detonated in land blasting. The highest levels of vibration were recorded as 8.74 cm/s in the desilting tunnel on the right of the cofferdam. The explosives up to 11887.7 kg were detonated in an underwater blasting. According to the analysis of the law of vibration attenuation, the blast vibration value was reduced to 7.65 cm/s. The results showed that the research on the attenuation law of blasting vibration can effectively increase the charge weight per delay and control the blast-induced vibration. Consequently, the peak particle velocity (PPV) of underwater blasting could be predicted by analyzing the PPV of land blasting in same structure, which provided the basis for the design of underwater blasting parameters. A reliable method for cofferdam demolition in hydropower station was proposed, which provided a reference for similar projects.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zeming Wang ◽  
Jianhua Yang ◽  
Ting Zhang ◽  
Chi Yao ◽  
Xiaobo Zhang ◽  
...  

Tunnel blast-induced vibration probably causes damage to the rock mass surrounding the tunnel surface and also to the rock mass of the slope at the tunnel entrance. It is important to simultaneously monitor the vibration on the tunnel surface and on the tunnel entrance slope face, especially when the blasting work face is close to tunnel entrance. During blasting excavation of the traffic tunnel at Baihetan hydropower station, vibration monitors were installed both on the tunnel surface and on the tunnel entrance slope face. Based on the monitoring data, a comparative study is conducted on the peak particle velocity (PPV) and frequency characteristics of the vibrations at these two locations. A three-dimensional FEM simulation of the tunnel blast is then performed to verify the field test results. The field monitoring and the numerical simulation show that there is significant difference between the vibration on the tunnel surface and that on the tunnel entrance slope face. The vibration on the tunnel surface has greater PPV and faster attenuation, while the tunnel entrance slope face has higher frequency and faster reduction rate in the center frequency. These differences are attributed to the different wave types and wave propagation paths. The tunnel surface is mainly surface waves transmitted through the damaged rock mass around the tunnel profile, while the tunnel entrance slope face originates mainly from the body waves transmitted via the undamaged rock mass inside the mountain. The comparisons of the monitored vibrations with the velocity limits specified in the Chinese standard show that the most dangerous vibration that may exceed the limit occurs on the tunnel surface. Therefore, the maximum charge weight used in the tunnel blast is determined by the vibration on the tunnel surface. Under different control standards, the allowable maximum charge weight per delay is further discussed.


2011 ◽  
Vol 255-260 ◽  
pp. 4256-4261 ◽  
Author(s):  
Hong Yan Liu ◽  
Ming Wang

On basis of the existed TCK model, the establishment process of a new rock blasting damage model is discussed by considering the relationship of crack density Cd, which indicates the shock damage extent of rock, and sound wave attenuation coefficient ap. Then, this model is inserted into the user-defined material model library of ANSYS/LS-DYNA3D software to construct the new damage model. Numerical simulation of damage to retained rock mass of dam foundation caused by rock blasting excavation in dam region with this model. Calculation results show that: as far as the blasting parameters and geological conditions in this paper, the damage to retained rock mass below caused by rock blasting excavation above is basically limited to the scope of 1.5m below the bottom of blasthole, and damage degree gradually reduces from the bottom of blasthole to faraway. Meanwhile, blasting will not cause rock mass to open along soft layer inside, whose maximum calculation displacement is only 3mm. The calculation result can be referred by the practical engineering.


2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Yang Liu ◽  
Shuhan Wang ◽  
Peng Dong ◽  
Xiangyang Xu

An electric oil pump (EOP) was integrated into the hydraulic system and an automatic transmission (AT) mechanical oil pump (MOP) was downsized. These processes were performed to combine a start-stop function with the AT and further improve the transmission efficiency. Furthermore, this study established a dynamics model of power loss and leakage of an 8-speed AT; a flow-based control algorithm of the EOP was then developed to realize the start-stop function and support the MOP to meet the flow requirement of the system. Based on a driving simulation method, sizes of the MOP and EOP that ensured optimal fuel economy were selected. A control strategy for the starting clutch was also developed to minimize the starting delay of the test vehicle. A test environment on a rig and prototype vehicle was established to verify the feasibility of the proposed control strategies. The test results indicated that the transmission functioned favorably with the novel two-pump system presented, and a quick and smooth starting performance was achieved when the engine was restarted. The findings in this study are extremely valuable for forward designs of an AT for realizing start-stop function and improving efficiency.


2021 ◽  
Vol 12 (1) ◽  
pp. 22-39
Author(s):  
Saha Dauji

Underground blasts are conducted for deep excavations, tunneling, or mining activities. Scaled distance regression analysis is performed in industry to estimate peak particle velocity from charge weight and distance. For addressing the uncertainties in estimating safe charge weight for controlled blasting, 95% confidence expression is generally used. For addressing inaccuracies arising from superimposition of blast waves in multi-hole blasting when using attenuation equation developed from single-hole blast data, a modified approach was proposed in literature. This article presents comparisons to establish that industrial practice of scaled distance regression would be as satisfactory as the proposed modified approach, when various performance measures (including parsimony) are considered together. Furthermore, industrial practice of using 95% confidence expression generated from sufficient data (say, 40 numbers) would result in safe charge weight estimation, whereas modified scaled distance approach (mean expression) could still result in few non-conservative values.


2015 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Satya Pal Singh

<p class="1Body">Nanotechnology is the understanding and control of matter at the diemnsions ranging between 1-100 nm. One nanometer is one billionth of a meter. Nanotechnology involves manipulation of atoms, imaging, measuring and modelling at nano scale. Its potentials were first highlighted by Richard Feynman in the American Physical Scociety meeting in 1959. Though, he did not coin the world nanotechnology himself but he explored the possiblities of functional materials at the bottom of the scale. In last two decades this technology has been commercialized to great extent and gaining importance day by day influencing the economies of different countries and henceforth enforcing the policy makers to address the issues like environment, health and safety. Governments are regularisaing and monitoring its research, uses, applications and technology transfer which includes intelluctaul property rights. This paper addresses the dimensions and trends of nanotechnology covering economic aspects. The paper is focussed on the changes in the functional properties of nanomaterials as physical, chemical, optical, electronic, electrical, magnetic etc. in comparision to those of the bulk of material. It has been discussed how the basic and advance research in nanoscience could be explotiedfor making technologies for its commercial and industrial applications for the benefit and safety of the soceity. Thin film magnetism is demonstrated using Monte Carlo simulation method. Experimental synthesisof some of thenanorods and qunatum dots are also discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document