scholarly journals Spheroidization and Coarsening of Eutectic Si Particles in Al-Si-Based Alloys

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohamed Ibrahim ◽  
Mohamed Abdelaziz ◽  
Agnes Samuel ◽  
Herbert Doty ◽  
Fawzy Samuel

The present study was carried out on three Al-Si cast alloys viz., 319, 356, and 413 alloys, solidified at 8°C/s. Samples from 319 and 413 alloys were solution heat-treated at 510°C, whereas samples from 356 alloy were solutionized at 550°C, for up to 1200 h. The results reveal that complete spheroidization of eutectic Si particles in terms of achieving individual spherical particles cannot be achieved in most Al-Si-Cu-Mg alloys even after a solutionizing time of 1200 h which contradicts with the existing theory. Addition of Sr to Cu-free 356 alloy could lead to complete spheroidization after 1200 h at 550°C if the alloy was solidified at 8°C/s. Besides the dissolution theory of Ostwald, coarsening of Si particles can as well take place by impingement, fusion, and agglomeration. Increasing the Si content makes it difficult to achieve spheroidization, i.e., fragmentation and coarsening. Results obtained from observations of deeply etched samples (3D) contradict those obtained from polished samples (2D).

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Ho-Jung Kang ◽  
Jin-Young Park ◽  
Yoon-Suk Choi ◽  
Dae-Hyun Cho

Heat treatment is widely used to improve the properties of Al–Si–Mg alloys and its outcomes are influenced by the parameters applied during the treatment. This study describes the effect of the solution and artificial aging treatments on the microstructure and mechanical properties of die-cast Al–Si–Mg alloys. The microstructure of the as-cast Al–Si–Mg alloy was mainly composed of α-Al, complex needle-type eutectic Si particles, Mg2Si, and α-AlFeMn. The complex needle-type eutectic Si particles disintegrated into spheroidal morphologies, while the Mg2Si was dissolved due to the solid solution treatment. The maximum yield strength (YS) and ultimate tensile strength (UTS) values were 126.06 and 245.90 MPa at 520 °C after 90 min of solution heat treatment, respectively. Although the YS and UTS values of the Al–Si–Mg alloys reduced due to the solution treatment, the elongation (EL) of the solid solution heat-treated Al–Si–Mg alloys was improved in comparison to that of the as-cast Al–Si–Mg alloy. The maximum YS and UTS of 239.50 and 290.93 MPa were obtained after performing artificial aging at 180 °C for 180 min, respectively. However, the EL of the aging heat-treated alloy was reduced by a minimal value.


2020 ◽  
Vol 14 (4) ◽  
pp. 1013-1024 ◽  
Author(s):  
M. H. Abdelaziz ◽  
A. M. Samuel ◽  
H. W. Doty ◽  
F. H. Samuel

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2016 ◽  
Vol 850 ◽  
pp. 511-518 ◽  
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The effects of Mg and Cu additions with different contents on the mechanical properties of Al-Si alloy prepared by indirect squeeze casting have been experimentally investigated. The microstructure and mechanical properties of as-cast and T6-treated Al-Si-Cu-Mg alloys were tested by OM, SEM, DSC and tensile measurement, where the samples were produced by artificial aging at 180°C for 8 h after solution treatment at 540°C for 4 h. It has been found that for the as-cast alloys, with increasing contents of Mg and Cu the tensile strength (UTS) and yield strength (YS) increased, while the percentage elongation (El) decreased. And the optimal mechanical properties of Al-Si-Cu-Mg alloys were obtained under the content ratio of Cu/Mg within 4, where the UTS and El reached 426 MPa and 6.3% after T6 treated, respectively.


2006 ◽  
Vol 519-521 ◽  
pp. 1257-1264 ◽  
Author(s):  
S. El Hadad ◽  
A.M. Samuel ◽  
F.H. Samuel ◽  
H.W. Doty ◽  
S. Valtierra

The role of bismuth (50 to 9000 ppm) and calcium (50 to 200 ppm) additions on the microstructural characteristics in Sr-modified 319 alloys (with/without 0.4 wt% Mg addition) were investigated using optical and electron microscopy, and image analysis. It was found that the modification effect of Sr continuously diminished with Bi addition up to ~3000 ppm Bi; further Bi addition led to the modification of the Si particles due to the presence of Bi. In the Ca-containing alloys, a coarse eutectic Si structure resulted with Ca additions of 50 ppm, due to the formation of Alx(Ca,Sr)Siy compounds. Increased Ca additions (up to 200 ppm) did not alter the Si particle size. The Alx(Ca,Sr)Siy phase particles appeared in rod-like form in the Sr-modified alloys and in plate-like form in the 319+0.4 wt% Mg alloys. MgO, Al2O3, and AlP particles appear to act as nucleants for the precipitation of the plate-like Alx(Ca,Sr)Siy phase.


2014 ◽  
Vol 606 ◽  
pp. 55-59 ◽  
Author(s):  
R. Senthil ◽  
A. Gnanavelbabu

Magnesium alloys are the very progressive materials whereon is due to improve their end-use properties. Especially, wrought Mg alloys attract attention since they have more advantageous mechanical properties than cast Mg alloys. Investigations were carried out the effects of heat treatment on tensile strength and microstructure of AZ61A magnesium alloy. The AZ61A Mg alloy is solution heat treated at the temperature of 6500F (343°C) for various soaking timing such as 120 min, 240 min and 360 minutes and allowed it cool slowly in the furnace itself. Magnesium alloys usually are heat treated either to improve mechanical properties or as means of conditioning for specific fabrication operations. Special attention had been focused on the analysis of mutual relations existing between the deformation conditions, microstructural parameters, grain size and the achieved mechanical properties. The result after the solution heat treatment, showed remarkably improved hardness, tensile strength and yield strength. It would be appropriate for a forming process namely isostatic forming process.


2018 ◽  
Vol 941 ◽  
pp. 1607-1612 ◽  
Author(s):  
Shu Lin Lü ◽  
Xiong Yang ◽  
Liang Yan Hao ◽  
Shu Sen Wu

In this work, ultrasonic rheocasting was used to refine the microstructures of Mg alloys reinforced with long period stacking ordered (LPSO) phase. The semisolid slurries of Mg-Zn-Y and Mg-Ni-Y alloys were prepared by ultrasonic vibration (UV) and then formed by rheo-squeeze casting under high squeeze pressure (~ 400 MPa). The effects of UV and squeeze pressure on microstructure and mechanical properties of the Mg alloys were studied. The results reveal that UV and rheo-squeeze casting can significantly refine the LPSO structure and alpha-Mg matrix in Mg alloys, but they cannot change the phase compositions of the alloys or the type of LPSO phase. When the squeeze pressure is 400 MPa, the average thickness of LPSO phase is decreased, and the block LPSO structure is completed eliminated and uniformly distributed at the grain boundaries. Compared with the gravity cast alloys without UV, mechanical properties of the rheocast Mg alloys were enhanced and reached the maximums when the squeeze pressure was 400 MPa.


Sign in / Sign up

Export Citation Format

Share Document