scholarly journals Estimation and Analysis of Sports Energy Consumption Based on Gait Tactile Parameters

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Yan ◽  
Zang Jian-Cheng ◽  
Li Bi-Tao

The morbidity of obesity and related metabolic syndrome is on the rise, which may be related to the decrease of physical activity. Therefore, keeping energy balance is the basic premise to prevent multiple metabolic syndromes, and the research on the composition and application of energy consumption has become a hot spot. The combination of expectation-maximization algorithm and MapReduce computing model realizes the migration of traditional algorithm to “cloud computing” platform. The physical fitness evaluation algorithm based on collaborative filtering is constructed, and a gait tactile recognition algorithm is proposed by feature selection based on the MEMS sensor. Finally, the algorithm is tested, and a conclusion is drawn. This algorithm is effective in monitoring and recognizing human gait. With the increase of weightlessness characteristics, the sensitivity of detection remains unchanged, and the specificity will increase. In a word, it is scientific and effective. Thus, the reference for establishing the index system of tactile biomechanical parameters of adolescent gait and studying the low-cost and portable energy measurement method of multiparameter indexes is provided.

Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2021 ◽  
Vol 13 (8) ◽  
pp. 4379
Author(s):  
Linjie Ren ◽  
Guobin Lin ◽  
Yuanzhe Zhao ◽  
Zhiming Liao

In rail transit traction, due to the remarkable energy-saving and low-cost characteristics, synchronous reluctance motors (SynRM) may be a potential substitute for traditional AC motors. However, in the parameter extraction of SynRM nonlinear magnetic model, the accuracy and robustness of the metaheuristic algorithm is restricted by the excessive dependence on fitness evaluation. In this paper, a novel probability-driven smart collaborative performance (SCP) is defined to quantify the comprehensive contribution of candidate solution in current population. With the quantitative results of SCP as feedback in-formation, an algorithm updating mechanism with improved evolutionary quality is established. The allocation of computing resources induced by SCP achieves a good balance between exploration and exploitation. Comprehensive experiment results demonstrate better effectiveness of SCP-induced algorithms to the proposed synchronous reluctance machine magnetic model. Accuracy and robustness of the proposed algorithms are ranked first in the comparison result statistics with other well-known algorithms.


AJIL Unbound ◽  
2021 ◽  
Vol 115 ◽  
pp. 263-267
Author(s):  
Doron Teichman ◽  
Eyal Zamir

The use of nudges—“low-cost, choice-preserving, behaviorally informed approaches to regulatory problems”—has become quite popular at the national level in the past decade or so. Examples include changing the default concerning employees’ saving for retirement in a bid to encourage such saving; altering the default about consent to posthumous organ donation to increase the supply of organs for transplantation; and informing people about other people's energy consumption to spur them to reduce theirs. Nudges are therefore used to promote the welfare of the people being nudged, and of society at large. However, the use of nudges has sparked a lively normative debate. When turning to the international arena, new arguments for and against nudges can be raised. This essay focuses on the normative aspects of using nudges in the international arena.


Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 789
Author(s):  
David Kreuzer ◽  
Michael Munz

With an ageing society comes the increased prevalence of gait disorders. The restriction of mobility leads to a considerable reduction in the quality of life, because associated falls increase morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations. For that reason, the early and systematic diagnostic treatment of gait disorders can spare a lot of suffering. As modern gait analysis systems are, in most cases, still very costly, many patients are not privileged enough to have access to comparable therapies. Low-cost systems such as inertial measurement units (IMUs) still pose major challenges, but offer possibilities for automatic real-time motion analysis. In this paper, we present a new approach to reliably detect human gait phases, using IMUs and machine learning methods. This approach should form the foundation of a new medical device to be used for gait analysis. A model is presented combining deep 2D-convolutional and LSTM networks to perform a classification task; it predicts the current gait phase with an accuracy of over 92% on an unseen subject, differentiating between five different phases. In the course of the paper, different approaches to optimize the performance of the model are presented and evaluated.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 256
Author(s):  
Pengfei Han ◽  
Han Mei ◽  
Di Liu ◽  
Ning Zeng ◽  
Xiao Tang ◽  
...  

Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.


2021 ◽  
Vol 13 (5) ◽  
pp. 128
Author(s):  
Jun Liu ◽  
Xiaohui Lian ◽  
Chang Liu

In Space–Air–Ground Integrated Networks (SAGIN), computation offloading technology is a new way to improve the processing efficiency of node tasks and improve the limitation of computing storage resources. To solve the problem of large delay and energy consumption cost of task computation offloading, which caused by the complex and variable network offloading environment and a large amount of offloading tasks, a computation offloading decision scheme based on Markov and Deep Q Networks (DQN) is proposed. First, we select the optimal offloading network based on the characteristics of the movement of the task offloading process in the network. Then, the task offloading process is transformed into a Markov state transition process to build a model of the computational offloading decision process. Finally, the delay and energy consumption weights are introduced into the DQN algorithm to update the computation offloading decision process, and the optimal offloading decision under the low cost is achieved according to the task attributes. The simulation results show that compared with the traditional Lyapunov-based offloading decision scheme and the classical Q-learning algorithm, the delay and energy consumption are respectively reduced by 68.33% and 11.21%, under equal weights when the offloading task volume exceeds 500 Mbit. Moreover, compared with offloading to edge nodes or backbone nodes of the network alone, the proposed mixed offloading model can satisfy more than 100 task requests with low energy consumption and low delay. It can be seen that the computation offloading decision proposed in this paper can effectively reduce the delay and energy consumption during the task computation offloading in the Space–Air–Ground Integrated Network environment, and can select the optimal offloading sites to execute the tasks according to the characteristics of the task itself.


2021 ◽  
Author(s):  
Hongxia Qian ◽  
Zhifeng Liu ◽  
Zhengang Guo ◽  
Mengnan Ruan ◽  
Weiguo Yan

Investigating high-efficiency, low-cost and abundant photoelectrode materials has always been a hot spot for researchers to attention in photoelectrochemical (PEC) system. Here we firstly study the PEC performance of ternary...


2021 ◽  
Vol 13 (8) ◽  
pp. 4496
Author(s):  
Giuseppe Desogus ◽  
Emanuela Quaquero ◽  
Giulia Rubiu ◽  
Gianluca Gatto ◽  
Cristian Perra

The low accessibility to the information regarding buildings current performances causes deep difficulties in planning appropriate interventions. Internet of Things (IoT) sensors make available a high quantity of data on energy consumptions and indoor conditions of an existing building that can drive the choice of energy retrofit interventions. Moreover, the current developments in the topic of the digital twin are leading the diffusion of Building Information Modeling (BIM) methods and tools that can provide valid support to manage all data and information for the retrofit process. This paper shows the aim and the findings of research focused on testing the integrated use of BIM methodology and IoT systems. A common data platform for the visualization of building indoor conditions (e.g., temperature, luminance etc.) and of energy consumption parameters was carried out. This platform, tested on a case study located in Italy, is developed with the integration of low-cost IoT sensors and the Revit model. To obtain a dynamic and automated exchange of data between the sensors and the BIM model, the Revit software was integrated with the Dynamo visual programming platform and with a specific Application Programming Interface (API). It is an easy and straightforward tool that can provide building managers with real-time data and information about the energy consumption and the indoor conditions of buildings, but also allows for viewing of the historical sensor data table and creating graphical historical sensor data. Furthermore, the BIM model allows the management of other useful information about the building, such as dimensional data, functions, characteristics of the components of the building, maintenance status etc., which are essential for a much more conscious, effective and accurate management of the building and for defining the most suitable retrofit scenarios.


Author(s):  
Mohamed H Abdelhafiz ◽  
Mohammed I Awad ◽  
Ahmed Sadek ◽  
Farid Tolbah

This paper describes the development of a human gait activity recognition system. A multi-sensor recognition system, which has been developed for this purpose, was reduced to a single sensor-based recognition system. A sensor election method was devised based on the maximum relevance minimum redundancy feature selector to determine the sensor’s optimum position regarding activity recognition. The election method proved that the thigh has the highest contribution to recognize walking, stairs and ramp ascending, and descending activities. A recognition algorithm (which depends mainly on features that are classified by random forest, and selected by a combined feature selector using the maximum relevance minimum redundancy and genetic algorithm) has been modified to compensate the degradation that occurs in the prediction accuracy due to the reduction in the number of sensors. The first modification was implementing a double layer classifier in order to discriminate between the interfered activities. The second modification was adding physical features to the features dictionary used. These modifications succeeded to improve the prediction accuracy to allow a single sensor recognition system to behave in the same manner as a multi-sensor activity recognition system.


Sign in / Sign up

Export Citation Format

Share Document