scholarly journals Analytical Calculation of Critical Anchoring Length of Steel Bar and GFRP Antifloating Anchors in Rock Foundation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nan Yan ◽  
Xueying Liu ◽  
Mingyi Zhang ◽  
Xiaoyu Bai ◽  
Zheng Kuang ◽  
...  

Antifloating anchors are widely used during the construction of slab foundations to prevent uplift. However, existing methods for calculating the critical length of these anchors have limited capabilities and therefore require further research. As the mechanisms which govern the displacement and stability of antifloating anchors are closely related to those of piles subject to uplift, a simplified anchor model has been developed based on existing concentric thin-walled cylinder shear transfer models used for pile design. Analytical expressions for the critical length of the steel bar and GFRP (glass fiber reinforced polymer) antifloating anchors in rock are derived accordingly before demonstrating the validity of the method through engineering examples. The research results show that when the length of an antifloating anchor is less than a critical length, shear slip failure occurs between the anchor and surrounding material due to excessive shear stress. When the length of an anchor approaches the critical length, the shear stress gradually decreases to the undisturbed state. If the anchor length is larger than the critical length, the uplift loads are safely transferred to the ground without causing failure. The ratio of elastic modulus between the anchor and rock mass was found to be positively correlated with the critical anchoring length. Because the elastic modulus of GFRP bars is lower than that of steel bars, the critical anchoring length of GFRP bars is greater than that of steel bars under the same anchor-to-rock modulus ratio (Ea/Es). The results show that the proposed calculation method for the critical length of antifloating anchors appears valid and could provide a theoretical basis for the design of antifloating anchors after further refinement.

2018 ◽  
Vol 45 (6) ◽  
pp. 458-468 ◽  
Author(s):  
Brandon Fillmore ◽  
Pedram Sadeghian

Contribution of longitudinal glass fiber-reinforced polymer (GFRP) bars in concrete columns under compression has been ignored by current design guidelines. This paper challenges this convention by testing 21 concrete cylinders (150 mm × 300 mm) reinforced with longitudinal GFRP and steel bars in compression. It was observed that GFRP bars could sustain high level of compressive strains long after the peak load of the specimens without any premature crushing. The results of a new coupon test method showed that the elastic modulus of GFRP bars in compression is slightly higher than that of in tension, however the compressive strength was obtained 67% of tensile strength. An analytical model was successfully implemented to predict the axial capacity of the tests specimens and it was found that the contribution of the bars in the load capacity of the specimens was within 4.5–18.4% proportional to the bars reinforcement ratio normalized to the elastic modulus of steel bars.


2018 ◽  
Vol 8 (12) ◽  
pp. 2353 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Ju-Hyun Mun

The objective of this study is to examine the effect of the poor anchorage length of glass fiber reinforced polymer (GFRP) bars used for longitudinal reinforcement on the flexural and shear performances of beam elements in exterior beam–column connections made using high-strength materials. Six exterior beam–column connection specimens were tested under reversal cyclic loads applied at the free-end of the beam. The selected strength categories of materials in the beam element were as follows: 35 MPa and 70 MPa for the design compressive strength of concrete, 400 MPa and 600 MPa for the yield strength of conventional longitudinal steel bars, and 800 MPa for the tensile strength of the GFRP bar. All the longitudinal steel bars of the beams satisfied the minimum requirements of the provisions of ACI 318–14, whereas all the longitudinal GFRP bars of the beam were linearly anchored into the column section, resulting in poor anchorage length, especially for the beam with the concrete compressive strength of 35 MPa. The flexure-governed beams with GFRP bars exhibited a greater increasing rate in displacement at the pre-peak state and did not display the plastic flow characteristic after the peak load when compared with companion beams with steel bars. The beams with GFRP bars possessed lower diagonal cracking strengths and shear capacities than the companion beams with steel bars although the shear capacities of the beams with GFRP bars could be conservatively predicted using the design equation of ACI 440.1R–15 provision. The low elastic modulus and elongation capacity of GFRP bars resulted in large displacements and brittle post-peak beam performances. Furthermore, the lack of anchorage length of GFRP bars in exterior beam–column connection significantly reduced the flexural strength and ductility of the beam element.


2014 ◽  
Vol 1051 ◽  
pp. 748-751 ◽  
Author(s):  
Norhafizah Salleh ◽  
Abdul Rahman Mohd Sam ◽  
Jamaludin Mohd Yatim ◽  
Mohd. Firdaus bin Osman

The use of glass-fiber-reinforced polymer (GFRP) bar to replace steel reinforcement in concrete structures is a relatively a new technique. The GFRP bars possess mechanical properties different from steel bars, including high tensile strength combined with low elastic modulus and linear stress–strain relationship up to failure. Therefore, design procedures and process should account for these properties. This paper presents the experimental work on the flexural behavior of concrete beam reinforced with GFRP bars and strengthen with CFRP plate. A total of ten reinforced concrete beams reinforced with either steel and GFRP bars were cast and tested under four point loads. Eight concrete beams (200x250x2800mm) were reinforced with 13mm diameter GFRP bars together with strengthening using CFRP plate and two control beams reinforced with 12mm diameter steel bars were tested. The experimental results show that although the stiffness of the beams reduced but the ultimate load of the GFRP reinforced concrete beam is bigger than steel reinforced beam. It was also found that strengthening using CFRP plate will further enhanced the flexural performance of the beams with GFRP bars.


2010 ◽  
Vol 452-453 ◽  
pp. 781-784 ◽  
Author(s):  
Yun Cheul Choi ◽  
Hyun Ki Choi ◽  
Chang Sik Choi

The use of glass-fiber-reinforced polymer (GFRP) bars to replace steel reinforcement in concrete structures is a relatively new technique. GFRP bars possess mechanical properties different from steel bars, including high tensile strength combined with low elastic modulus and elastic brittle stress–strain relationship. Therefore, design procedures should account for these properties. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were lab-spliced length of GFRP rebar. A total of 6 concrete beams reinforced with steel and GFRP rebar tested. Three concrete beams reinforced with spliced GFRP rebar and 1 reference beams reinforced with non-spliced GFRP rebar was tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebar. All test specimens were tested under 2-point loads so that the spliced region is subject to constant moment. The experimental results show that the splice length of GFRP increased with the ultimate load increasing and decreased with stiffness.


2021 ◽  
Vol 11 (23) ◽  
pp. 11161
Author(s):  
Xinrong He ◽  
Guowei Li ◽  
Sidi Kabba Bakarr ◽  
Jiantao Wu ◽  
Wei Yu

Soft rock slopes were anchored with traditional steel bars and new Glass Fibre Reinforced Polymer (GFRP) bars. The difference in the anchorage performance of the two kinds of anchorage elements in soft rock and expansive soil was studied by an in-situ test. The results show that cyclic load can aggravate the bond damage of the interface between grouting body and both kinds of bars used in soft rock. Compared with the number of cyclic loads applied, the previous maximum load is the main factor that influences the bond damage of the anchorage bar. Under constant loading, the interface bond behaviour of GFRP bar is better than the steel bar. Because of the small difference in elastic modulus between the GFRP bar and the grouting body, the interface bond around the GFRP bar can invoke more resistance of the grouting body efficiently which demonstrates its more effective anchorage performance than the steel bar under the same conditions. The anchorage structure of steel bar in soft rock can generate larger interfacial relative displacement with increasing load than the GFRP bar in the anchorage section, even though the elastic modulus of steel is much larger than GFRP. In the expansive soil, the anchorage structure deformations of steel and GFRP bars are almost the same because of the weaker bond at the interface of the grouting body and the surrounding soil than that of the bar interface. Under the ultimate loading of the anchorage structure in soft rock, the steel bar with 450 MPa which is less than its ultimate strength shows the failure of the bar body pulling-out, and the GFRP bar with 508 MPa which is larger than its ultimate strength shows the failure of the bar body by fracture. The steel bar anchorage structure in soft rock is destroyed at the interface around the grouting body. The results show that the GFRP bar performs more efficiently than the steel bar.


2018 ◽  
Vol 64 (4) ◽  
pp. 243-256
Author(s):  
D. Szczech ◽  
R. Kotynia

AbstractThe paper presents research program of bond between glass fiber reinforced polymer bars and concrete in reference to the steel bars. Bond between the reinforcement and concrete is a crucial parameter governing a behaviour of reinforced concrete members and transferring of the internal forces from concrete to the reinforcement. The use of FRP bars as an equivalent reinforcement to steel in concrete structures has increased in recent years. The FRP bars are very different from steel, mainly due to much lower elasticity modulus and their anisotropic structure. Good performance of FRP reinforced concrete requires sufficient interfacial bond between bars and concrete. However, there are no specific standards referring to the surface preparation of these bars, that leads to variable bond behaviour of the composite reinforcement to the concrete. The objective of the study was to investigate the influence of variable parameters on the bond behaviour to concrete. The experimental program consisted of eighteen beam bond specimens varying in: bar diameter (12mm, 16mm, 18mm) and type of reinforcement (GFRP sand – coated and steel bars). Although the GFRP bars indicated good bond behaviour to concrete, the average bond strength was slightly lower than that of steel reinforcement of 16mm and 18 mm, while it was higher for the GFRP bars of 12mm diameter.


Author(s):  
Tales Viebrantz Fernandes ◽  
Aline Ribeiro Paliga ◽  
Charlei Marcelo Paliga

abstract: There is a recurring need to construct in places where environmental aggressiveness is very high, such as tidal-splash sites, chemical industries, etc. In these places, steel bars, commonly used for concrete reinforcement, can suffer deterioration, losing cross-sectional area and consequently the resistant capacity. In this regard, Glass Fiber Reinforced Polymers (GFRP) bars can replace steel because of its high strength to harsh environments, low weight and high tensile strength. Thus, this work aimed to compare reinforced concrete beams with steel bars and GFRP bending bars using the procedures indicated in ABNT:NBR 6118 and ACI 440.1R-15, respectively. Experimental three-point flexural tests were performed on six concrete beams, three reinforced with steel bars and three reinforced with GFRP bars. The beams were designed for centered point loads of 23.5 kN, 37.5 kN and 57 kN, and for each load one beam was reinforced in steel and one in GFRP. As main conclusions, it can be said that the beams reinforced with GFRP bars presented greater transverse displacements due to the low modulus of elasticity of this material. In addition, the beams presented rupture loads close to each design load, showing agreement in the recommendations of the two normative documents. Comparing the maximum loads of steel and GFRP beams, ratios of +9.3%, -3.2% and -3% were obtained for beams designed for 23.5 kN, 37.5 kN and 57 kN, respectively. Also, that variations in design loads cause greater variation in the longitudinal reinforcement rate of GFRP bar-beams compared to steel-bar beams.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yanqing Wang ◽  
Beicheng Wu ◽  
Yu Guo ◽  
Haifeng Yang

The fiber pullout is a main failure after the fiber is broken in the tension of glass fiber reinforced polymer (GFRP) bolt. In this paper, the numerical analysis is done on the distribution of both fiber normal force and interface shear stress. The results show that, on the ideal interface, the fiber pullout occurs from the lower end to the upper end of the matrix gradually, and both the normal stress of the fiber and the shear stress of the ideal interface gradually increase from the lower end to the upper end. With the increase of the interface layer thickness, the shear stress concentration area on the interface is enlarged while the stress applied is reduced, and the displacement of GFRP deformation is increasing sharply. This means that the capacity of GFRP deformation is enhanced. As a soft elastic body, the interface layer with a smaller elastic modulus can make the fiber stress and the interface shear stress sharply small and well dispersed. In addition, the load can be effectively transferred to the reinforced phase fibers in a bigger interfacial layer elastic modulus with a certain strength.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1508
Author(s):  
Ali Raza ◽  
Ahmad Rashedi ◽  
Umer Rafique ◽  
Nazia Hossain ◽  
Banjo Akinyemi ◽  
...  

Structural members comprising geopolymer recycled aggregate concrete (RAC) reinforced with glass fiber-reinforced polymer (GFRP) bars have not been investigated appropriately for axial compressive loading cases. The present study addresses this knowledge gap by evaluating the structural efficiency of GFRP-reinforced geopolymer recycled aggregate concrete (GGRAC)-based members subjected to axial compressive loading. A total of nine compressive members (250 mm in cross-section and 1150 mm in height) were constructed to examine the effect of the number of longitudinal GFRP bars and the vertical spacing of transverse GFRP hoops/ties. The experimental results portrayed that the ductility of GGRAC compressive members improved with the reduction in the pitch of GFRP hoops. The axial load-carrying capacity (LCC) of GGRAC compressive members increased by increasing the number of GFRP bars up to eight (corresponding to a reinforcement ratio of 2.11%) while it decreased by using ten longitudinal GFRP bars (corresponding to a reinforcement ratio of 2.65%). Additionally, an empirical model was suggested to predict the axial LCC of GGRAC compressive members based on a large amount of experimental data of similar members. The experimental results and related theoretical predictions substantially prove the applicability and accuracy of the proposed model. The proposed column represents a feasible structural member in terms of material availability and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document