scholarly journals Minimum Void Ratio Model Established from Tailings and Determination of Optimal Void Ratio

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shibo Li ◽  
Hao Liang ◽  
Hao Li ◽  
Jianquan Ma ◽  
Bin Li

Minimum void ratio of tailings and its value change with fine content and are key design parameters for tailing consolidation and seepage stability. Based on the distribution of tailing grains with the sedimentary beach, we establish a minimum void ratio model for tailing grain in binary size, which requires only two parameters ( ε and ω ). Calibrations of the model using 168 groups of tests (22 kinds of grain size ratios with 7-9 kinds of fine contents) show two parameters that are fitting for power function, and the exponent values increase with the dominant grain size expanded. Besides, the exponent values are related to the equivalent grain size ratio, dominant grain size, and shape characteristics. The minimum void ratios with fine content are predicted under the derived model. Good agreement was obtained between the predictions and measurements, and the average discrepancies are less than 10%. And optimal void ratio and optimal fine content can be predicted, and the values are in good agreement with the experimental ones. Furthermore, based on the predicted optimal void ratio, the exponential relationship between the optimal void ratio and the equivalent grain size ratio may have no influence on the derived dominant grain size and shape characteristics. For tailings, further work is needed to verify if the derived exponential relationship between the optimal void ratio and the equivalent grain size ratio is valid.

2013 ◽  
Vol 275-277 ◽  
pp. 1833-1837
Author(s):  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

A Johnson-Mehl-Avrami-Kolmogorov (JMAK)-model was established for dynamic recrystallization in hot deformation process of 52100 steel. The effects of hot deformation temperature, true strain and strain rate on the microstructural evolution of the steel were physically studied by using Gleeble-1500 thermo-mechanical simulator and the experimental results were used for validation of the JMAK-model. Through simulation and experiment, it is found that the predicted results of DRX volume fraction, DRX grain size and average grain size are in good agreement with the experimental ones.


1994 ◽  
Vol 19 ◽  
pp. 92-96 ◽  
Author(s):  
TH. Achammer ◽  
A. Denoth

Broadband measurements of dielectric properties of natural snow samples near or at 0°C are reported. Measurement quantities are: dielectric permittivity, loss factor and complex propagation factor for electromagnetic waves. X-band measurements were made in a cold room in the laboratory; measurements at low and intermediate frequencies were carried out both in the field (Stubai Alps, 3300 m; Hafelekar near Innsbruck, 2100 m) and in the cold room. Results show that in the different frequency ranges the relative effect on snow dielectric properties of the parameters: density, grain-size and shape, liquid water content, shape and distribution of liquid inclusions and content of impurities, varies significantly. In the low-frequency range the influence of grain-size and shape and snow density dominates; in the medium-frequency range liquid water content and density are the dominant parameters. In the microwave X-band the influence of the amount, shape and distribution of liquid inclusions and snow density is more important than that of the remaining parameters.


Author(s):  
O. Adamidis ◽  
G. S. P. Madabhushi

Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


2017 ◽  
Author(s):  
Amir M. S. Lala

Abstract. The most commonly used relationship relates permeability to porosity, grain size, and tortuosity is Kozeny–Carman formalism. When it is used to estimate the permeability behavior versus porosity, the other two parameters (the grain size and tortuosity) are usually kept constant. Here, we investigate the deficiency of the Kozeny–Carman assumption and offer alternative derived equations for the Kozeny–Carman equation, including equations where the grain size is replaced with the pore size and with varying tortuosity. We also introduced relationships for the permeability of shaly sand reservoir that answer the approximately linear permeability decreases in the log-linear permeability-porosity relationships in datasets from different locations.


2011 ◽  
Vol 5 (1) ◽  
pp. 605-653 ◽  
Author(s):  
H. S. Negi ◽  
A. Kokhanovsky

Abstract. In the present study we describe the retrievals of snow grain size and spectral albedo (plane and spherical albedo) for Western Himalayan snow cover using Hyperion sensor data. The asymptotic radiative transfer (ART) theory was explored for the snow retrievals. To make the methodology operational only five spectral bands (440, 500, 1050, 1240 and 1650 nm) of Hyperion were used for snow parameters retrieval. The bi-spectral method (440 nm in the visible and 1050/1240 nm in the NIR region) was used to retrieve snow grain size. Spectral albedos were retrieved using satellite reflectances and estimated grain size. A good agreement was observed between retrieved snow parameters and ground observed snow-meteorological conditions. The satellite retrieved grain sizes were compared with field spectroradiometer retrieved grain sizes and close results were found for Lower Himalayan snow. The wavelength 1240 nm was found to be more suitable compared to 1050 nm for grain size retrieval along the steep slopes. The methodology was able to retrieve the spatial variations in snow parameters in different parts of Western Himalaya which are due to snow climatic and terrain conditions of Himalaya. This methodology is of importance for operational snow cover and glacier monitoring in Himalayan region using space-borne and air-borne sensors.


2018 ◽  
Vol 19 (10) ◽  
pp. 1583-1598 ◽  
Author(s):  
Leo Pio D’Adderio ◽  
Gianfranco Vulpiani ◽  
Federico Porcù ◽  
Ali Tokay ◽  
Robert Meneghini

Abstract One of the main goals of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission is to retrieve parameters of the raindrop size distribution (DSD) globally. As a standard product of the Dual-Frequency Precipitation Radar (DPR) on board the GPM Core Observatory satellite, the mass-weighted mean diameter Dm and the normalized intercept parameter Nw are estimated in three dimensions at the resolution of the radar. These are two parameters of the three-parameter gamma model DSD adopted by the GPM algorithms. This study investigates the accuracy of the Dm retrieval through a comparative study of C-band ground radars (GRs) and GPM products over Italy. The reliability of the ground reference is tested by using two different approaches to estimate Dm. The results show good agreement between the ground-based and spaceborne-derived Dm, with an absolute bias being generally lower than 0.5 mm over land in stratiform precipitation for the DPR algorithm and the combined DPR–GMI algorithm. For the DPR–GMI algorithm, the good agreement extends to convective precipitation as well. Estimates of Dm from the DPR high-sensitivity (HS) Ka-band data show slightly worse results. A sensitivity study indicates that the accuracy of the Dm estimation is independent of the height above surface (not shown) and the distance from the ground radar. On the other hand, a nonuniform precipitation pattern (interpreted both as high variability and as a patchy spatial distribution) within the DPR footprint is usually associated with a significant error in the DPR-derived estimate of Dm.


Sign in / Sign up

Export Citation Format

Share Document