scholarly journals Adaptation of Cowpea (Vigna unguiculata (L.) Walp.) to Water Deficit during Vegetative and Reproductive Phases Using Physiological and Agronomic Characters

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Vincent Ezin ◽  
Artoche Gloria Christelle Tosse ◽  
Ifagbémi Bienvenue Chabi ◽  
Adam Ahanchede

Cowpea (Vigna unguiculata (L.) Walp.) is an important commodity in West Africa. Its seeds are a valuable source of protein, vitamins, and income for humans. However, cowpea cultivation in Benin faces climatic constraints such as water stress caused by a prolonged absence of rain during the rainy season. Thus, this work aims at selecting cowpea varieties that can be cultivated in times of drought without compromising their yields and yield components. Twenty cowpea varieties were used, including 17 improved cultivars and 3 landraces. The experiment was conducted at the International Institute of Tropical Agriculture in Benin and laid at a split-plot design with four replicates. Each genotype was exposed to three water treatments: fully irrigated control, vegetative stress (when plants were 23 days old, drought stress was imposed for 30 days), and reproductive stress (once the first flowers were observed, water stress was imposed for 30 days). The results showed that photochemical yield, chlorophyll content, and relative water content were reduced under water deficit at the vegetative and reproductive stages. But there were no significant differences in proline content among cowpea varieties. Agronomic traits such as number of days to flowering, number of pods, yield per plant, the weight of 100 seeds, and harvest time showed significant differences under water stress. Overall, the landraces and cultivars including Kpodjiguegue, KVX 61-1, and IT 06-K-242-3 were the most tolerant to drought stress at the vegetative and reproductive stages and could potentially be used in breeding programs to improve drought tolerance of cowpeas.

Author(s):  
Matheus P. Quintela ◽  
Elvira M. R. Pedrosa ◽  
Lilia Willadino ◽  
Mario M. Rolim ◽  
Ênio F. de F. e Silva ◽  
...  

ABSTRACT This study aimed to evaluate the interaction between intensity and duration of water deficit (90, 56 and 22% of pot capacity [PC] for 30, 60 and 90 days under continuous stress) associated to the parasitism of the nematode Meloidogyne incognita on the growth of the sugarcane variety RB92579 and the activity of the enzymes catalase and ascorbate peroxidase. The experiment was conducted in completely randomized design in a 7 x 2 factorial scheme (seven water deficit treatments: control [90% PC], 56% PC for 30, 60 and 90 days, 20% PC for 30, 60 and 90 days; and two densities of M. incognita: 0 and 20000 eggs plant-1), with four replicates. The water stress corresponding to 56% PC for 30 or 60 days did not affect RB92579 development. The evaluated water treatments increased ascorbate peroxidase activity, but it did not affect catalase activity. Nematode inoculation did not affect RB92579 responses to drought stress conditions. The higher severity of water deficit (22% PC for 90 days) reduced M. incognita reproduction.


2022 ◽  
Vol 7 (1) ◽  
pp. 37-60
Author(s):  
Yenni ◽  
◽  
Mohd Hafiz Ibrahim ◽  
Rosimah Nulit ◽  
Siti Zaharah Sakimin ◽  
...  

<abstract> <p>Drought stress is one of the challenges that can affect the growth and the quality of strawberry. The study aims to determine the growth, biochemical changes and leaf gas exchange of three strawberry cultivars under drought stress. This study was conducted in a glasshouse at Indonesian Citrus and Subtropical Fruits Research Institute, Indonesia, from July-November 2018. The experiment was arranged in a factorial randomized completely block design (RCBD) with three replications and four water deficit (WD) levels [100% field capacity (FC)/well-watered), 75% of FC (mild WD), 50% of FC (moderate WD), and 25% of FC (severe WD)] for three strawberry cultivars (Earlibrite, California and Sweet Charlie). The results showed that total chlorophyll and anthocyanin contents (p ≤ 0.05) were influenced by the interaction effects of cultivars and water deficit. Whereas other parameters such as plant growth, transpiration rate (<italic>E</italic>), net photosynthesis (<italic>A</italic>), stomatal conductance (<italic>gs</italic>), leaf relative water content (LRWC), flowers and fruits numbers, proline content, length, diameter, weight and total soluble solid (TSS) of fruit were affected by water deficit. <italic>A</italic> had positive significant correlation with plant height (r = 0.808), leaf area (r = 0.777), fruit length (r = 0.906), fruit diameter (r = 0.889) and fruit weight (r = 0.891). Based on the results, cultivars affected LRWC, and also number of flowers and fruits of the strawberry. This study showed that water deficit decreased plant growth, chlorophyll content, leaf gas exchange, leaf relative water content, length, diameter and weight of fruit but enhanced TSS, anthocyanin, MDA, and proline contents. Increased anthocyanin and proline contents are mechanisms for protecting plants against the effects of water stress. California strawberry had the highest numbers of flowers and fruits, and also anthocyanin content. Hence, this cultivar is recommended to be planted under drought stress conditions. Among all water stress treatments, 75% of FC had the best results to optimize water utilization on the strawberry plants.</p> </abstract>


2021 ◽  
Vol 13 (5) ◽  
pp. 2923
Author(s):  
Botir Khaitov ◽  
Munisa Urmonova ◽  
Aziz Karimov ◽  
Botirjon Sulaymonov ◽  
Kholik Allanov ◽  
...  

Water deficiency restricts plant productivity, while excessive soil moisture may also have an adverse impact. In light of this background, field trials were conducted in secondary saline soil (EC 6.5 dS m−1) at the experimental station of Tashkent State Agrarian University (TSAU), Uzbekistan to determine drought tolerance of licorice (Glycyrrhiza glabra) by exposure to four levels of water deficit, namely control (70–80%), moderate (50–60%), strong (30–40%) and intense (10–20%) relative water content (WC) in the soil. The moderate drought stress exhibited positive effects on the morphological and physiological parameters of licorice, and was considered to be the most suitable water regime for licorice cultivation. Plant growth under the 50–60% WC treatment was slightly higher as compared to 70–80% WC treatment, exhibiting weak water deficit promotes licorice growth, root yield and secondary metabolite production. In particular, secondary metabolites i.e., ash, glycyrrhizic acid, extractive compounds and flavonoids, tended to increase under moderate water deficit, however further drought intensification brought a sharp decline of these values. These results contribute to the development of licorice cultivation technologies in arid regions and the most important consideration is the restoration of ecological and economical functions of the dryland agricultural system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bruno Degaspari Minardi ◽  
Ana Paula Lorenzen Voytena ◽  
Marisa Santos ◽  
Áurea Maria Randi

Elaphoglossum luridum(Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. TheE. luridumfrond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (Iopt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed inE. luridumin response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in theE. luridumfrond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.


2019 ◽  
Vol 11 (2) ◽  
pp. 266-276
Author(s):  
Kamal MIRI-HESAR ◽  
Ali DADKHODAIE ◽  
Saideh DOROSTKAR ◽  
Bahram HEIDARI

Drought stress is one of the most significant environmental factors restricting plant production all over the world. In arid and semi-arid regions where drought often causes serious problems, wheat is usually grown as a major crop and faces water stress. In order to study drought tolerance of wheat, an experiment with 34 genotypes including 11 local and commercial cultivars, 17 landraces, and six genotypes from International Maize and Wheat Improvement Center (CIMMYT) was conducted at the experimental station, School of Agriculture, Shiraz University, Iran in 2010-2011 growing season. Three different irrigation regimes (100%, 75% and 50% Field Capacity) were applied and physiological and biochemical traits were measured for which a significant difference was observed in genotypes. Under severe water stress, proline content and enzymes’ activities increased while the relative water content (RWC) and chlorophyll index decreased significantly in all genotypes. Of these indices, superoxide dismutase (SOD) and RWC were able to distinguish tolerant genotypes from sensitives. Moreover, yield index (YI) was useful in detecting tolerant genotypes. The drought susceptibility index (DSI) varied from 0.40 to 1.71 in genotypes. These results indicated that drought-tolerant genotypes could be selected based on high YI, RWC and SOD and low DSI. On the whole, the genotypes 31 (30ESWYT200), 29 (30ESWYT173) and 25 (Akbari) were identified to be tolerant and could be further used in downstream breeding programs for the improvement of wheat tolerance under water limited conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1169 ◽  
Author(s):  
Mary-Rus Martínez-Cuenca ◽  
Leandro Pereira-Dias ◽  
Salvador Soler ◽  
Lidia López-Serrano ◽  
David Alonso ◽  
...  

Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme represent a valuable tool for tomato breeding, particularly for tolerance to abiotic stresses. Water stress and salinity are major constraints to tomato’s cultivation, and for which limited genetic variability has been reported within the cultivated species. We evaluated four accessions of S. pimpinellifolium and four of S. l. var. cerasiforme for their adaptation to water deficit and salinity. The CO2 assimilation rate, stomatal conductance, substomatal CO2 concentration, transpiration rate, and leaf chlorophyll concentration were evaluated, as well as morphological and agronomic traits. The accessions showed a remarkable inter- and intra-species response variability to both stresses. Two S. pimpinellifolium accessions and one S. l. var. cerasiforme showed unaltered physiological parameters, thus indicating a good adaptation to water deficit. Two S. l. var. cerasiforme accessions showed an interesting performance under salt stress, one of which showing also good adaptation to water stress. In general, both stresses showed a negative impact on leaf size and fruit fresh weight, especially in the big-sized fruits. However, flowering, fruit setting and earliness remained unaltered or even improved when compared to control conditions. Stressed plants yielded fruits with higher ° Brix. Response to stresses seemed to be linked to origin environmental conditions, notwithstanding, variability was observed among accessions of the same region.


2008 ◽  
Vol 20 (1) ◽  
pp. 29-37 ◽  
Author(s):  
José Beltrano ◽  
Marta G. Ronco

The aim of this paper was to investigate the contribution of the arbuscular mycorrhizal fungus Glomus claroideum to drought stress tolerance in wheat plants grown under controlled conditions in a growth chamber, and subjected to moderate or severe water stress and rewatering. Water stress tolerance was determined through total dry weight, leaf relative water content, leakage of solutes and leaf chlorophyll and protein concentrations in mycorrhizal and non-mycorrhizal wheat plants. Total dry weight and leaf chlorophyll concentrations were significantly higher in mycorrhizal plants after moderate or severe water stress treatments compared with non-mycorrhizal ones. Electrolyte leakage was significantly lower in water-stressed inoculated plants. Compared to non-inoculated plants, leaf relative water content and total protein concentration of inoculated individuals increased only under severe water stress. When irrigation was re-established, mycorrhizal plants increased their total dry weight and leaf chlorophyll concentration, and recovered cell membrane permeability in leaves compared with non-mycorrhizal plants. In conclusion, root colonization by G. claroideum could be an adequate strategy to alleviate the deleterious effects of drought stress and retard the senescence syndrome in wheat.


2016 ◽  
Vol 27 (2) ◽  
pp. 128-135 ◽  
Author(s):  
J Akte ◽  
S Yasmin ◽  
MJH Bhuiyan ◽  
F Khatun ◽  
J Roy ◽  
...  

Five rice varieties viz. Binadhan-4, Binadhan-5, Binadhan-6, Binadhan-10 and Iratom-24 were evaluated in vitro under different water stress conditions. Several parameters such as germination percentage, shoot length, root length, shoot-root ratio, fresh weight, dry weight, turgid weight, relative water content and proline accumulation were studied. Drought condition was created by MS medium supplemented with five treatments of PEG, with a control such as 0%, 1%, 2%, 3% and 4% of PEG. The highest germination (100%) was found in the variety Binadhan-10 under low water stress conditions induced by 1% PEG. Similarly, the highest percentage of germination was found in all varieties under control condition (0% PEG). The lowest percentage of germination was obtained in the variety Iratom-24. But under severe stress (4% PEG), the highest percentage of germination was found only in the variety Binadhan-10. Moreover, the variety Binadhan-10 was found to be the best at 4% PEG for shoot length, root length, shoot-root ratio, relative water content and also the best at 1% PEG for fresh weight, dry weight, turgid weight. Water stress decreased relative water content and increased proline accumulation in rice. The highest relative water content was recorded in the variety Binadhan-10 and the lowest value recorded in the variety Binadhan-5. The highest proline content was obtained from the binadhan-6 at the highest treatment (4% PEG). Binadhan-10 showed the best performance almost in all the parameters under drought stress because of its own nature of tolerancy.Progressive Agriculture 27 (2): 128-135, 2016


2016 ◽  
Vol 75 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Zamin Shaheed Siddiqui ◽  
Huda Shahid ◽  
Jung-Il Cho ◽  
Sung-Han Park ◽  
Tae-Hun Ryu ◽  
...  

AbstractThe physiological responses of two halophytic grass species, Halopyrum mucronatum (L.) Staph. and Cenchrus ciliaris (L.), under drought stress were evaluated. Biomass accumulation, relative water content, free proline, H2O2content, stomatal conductance, photosynthetic performance and quantum yield (Fv/Fmratio) were studied. Under drought conditions, these halophytic plants expressed differential responses to water deficit. Stomatal conductance and free proline content were higher in H. mucronatum than in C. ciliaris, while H2O2content in H. mucronatum was substantially lower than in C. ciliaris. Performance index showed considerable sensitivity to a water deficit condition, more so in C. ciliaris than in H. mucronatum. Results were discussed in relation to comparative physiological performance and antioxidant enzymes activity of both halophytic grasses under drought stress.


Author(s):  
Lydia N. Horn ◽  
Habteab M. Ghebrehiwot ◽  
Fatma Sarsu ◽  
Hussein A. Shimelis

The objective of this study was to select cowpea (Vigna unguiculata [L.] Walp.) varieties that meet farmers’ needs in Namibia, from a set of newly developed and elite cowpea varieties developed through gamma irradiation. Thirty four candidate mutant cowpea varieties derived from three local varieties, (Shindimba, Bira and Nakare), were evaluated for nine agronomic traits. The new genotypes descended from Bira were favourably selected by all participants for their best plant cover. The genotype L1P12 (Bi450) was preferred by 81 percent percent of farmers for its higher pod setting ability. The genotype R4P5 (Nk150) with longer pod size and R3P1 (Bi600) with early maturity were ideal candidates preferred by nearly all farmers. The present study has identified farmers’ most-preferred cowpea varieties selected for their best agronomic performances and drought tolerance. These selected cowpea genotype lines will further be subjected to distinct, uniformity and stability trials for varietal registration and release.


Sign in / Sign up

Export Citation Format

Share Document