scholarly journals Network Pharmacology and Molecular Docking Study on the Potential Mechanism of Yi-Qi-Huo-Xue-Tong-Luo Formula in Treating Diabetic Peripheral Neuropathy

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yixuan Lin ◽  
Chuqiao Shen ◽  
Fanjing Wang ◽  
Zhaohui Fang ◽  
Guoming Shen

Objective. To investigate the potential mechanism of action of Yi-Qi-Huo-Xue-Tong-Luo formula (YQHXTLF) in the treatment of diabetic peripheral neuropathy (DPN). Methods. Network pharmacology and molecular docking techniques were used in this study. Firstly, the active ingredients and the corresponding targets of YQHXTLF were retrieved using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform; subsequently, the targets related to DPN were retrieved using GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmgkb, Therapeutic Target Database (TTD) and Drugbank databases; the common targets of YQHXTLF and DPN were obtained by Venn diagram; afterwards, the “YQHXTLF Pharmacodynamic Component-DPN Target” regulatory network was visualized using Cytoscape 3.6.1 software, and Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the potential targets using R 3.6.3 software. Finally, molecular docking of the main chemical components in the PPI network with the core targets was verified by Autodock Vina software. Results. A total of 86 active ingredients and 229 targets in YQHXTLF were screened, and 81 active ingredients and 110 targets were identified to be closely related to diabetic peripheral neuropathy disease. PPI network mapping identified TP53, MAPK1, JUN, and STAT3 as possible core targets. KEGG pathway analysis showed that these targets are mostly involved in AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, and MAPK signaling pathway. The molecular docking results showed that the main chemical components of YQHXTLF have a stable binding activity to the core pivotal targets. Conclusion. YQHXTLF may act on TP53, MAPK1, JUN, and STAT3 to regulate inflammatory response, apoptosis, or proliferation as a molecular mechanism for the treatment of diabetic peripheral neuropathy, reflecting its multitarget and multipathway action, and providing new ideas to further uncover its pharmacological basis and mechanism of action.


2021 ◽  
Vol 29 ◽  
pp. 239-256
Author(s):  
Qian Wang ◽  
Lijing Du ◽  
Jiana Hong ◽  
Zhenlin Chen ◽  
Huijian Liu ◽  
...  

BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.



2020 ◽  
Author(s):  
Mengke Sheng ◽  
Xing Liu ◽  
Qingsong Qu ◽  
Xiaowen Wu ◽  
Yuyao Liao ◽  
...  

Abstract Background: Chronic cough significantly affects human health and quality of life. Studies have shown that Sanao Decoction(SAD)can clinically treat chronic cough. To investigate its mechanisms, we used the method of network pharmacology to conduct research at the molecular level.Methods: The active ingredients and their targets were screened by pharmacokinetics parameters from the traditional Chinese medicine system pharmacology analysis platform (TCMSP). The relevant targets of chronic cough were obtained from two databases: GeneCards and DrugBank. Take the intersection to get potential targets of SAD to treat chronic cough and establish the component-target regulatory network by CytoScape3.7.2 and protein-protein interaction (PPI) network by STRING 1.0. The function of the target gene and related pathways were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) in the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The significant pathways and their relevant targets were obtained and the target-pathway network was established by CytoScape3.7.2. Finally, molecular docking of the core active components and relevant targets was performed.Results: A total of 98 active components, 113 targets were identified. The component-target and target-pathway network of SAD and PPI network were established. Enrichment analysis of DAVID indicated that 2062 terms were in biological processes, 77 in cellular components, 142 in molecular functions and 20 significant pathways. In addition, the molecular docking showed that quercetin and luteolin had a good combination with the corresponding targets.Conclusions: It indicates that the active compounds of SAD, such as quercetin, luteolin, may act on AKT1, MAPK1, RELA, EGFR, BCL2 and regulate PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Fluid shear stress and atherosclerosis pathway to exert the effects of anti-inflammatory, anti-airway remodeling, anti-oxidant stress and repair airway damage to treat chronic cough.



2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejiao Xie ◽  
Xingyu Ma ◽  
Siyu Zeng ◽  
Wansi Tang ◽  
Liucheng Xiao ◽  
...  

Atherosclerosis is a common metabolic disease characterized by lipid metabolic disorder. The processes of atherosclerosis include endothelial dysfunction, new endothelial layer formation, lipid sediment, foam cell formation, plaque formation, and plaque burst. Owing to the adverse effects of first-line medications, it is urgent to discover new medications to deal with atherosclerosis. Berberine is one of the most promising natural products derived from traditional Chinese medicine. However, the panoramic mechanism of berberine against atherosclerosis has not been discovered clearly. In this study, we used network pharmacology to investigate the interaction between berberine and atherosclerosis. We identified potential targets related to berberine and atherosclerosis from several databases. A total of 31 and 331 putative targets for berberine and atherosclerosis were identified, respectively. Then, we constructed berberine and atherosclerosis targets with PPI data. Berberine targets network with PPI data had 3204 nodes and 79437 edges. Atherosclerosis targets network with PPI data had 5451 nodes and 130891 edges. Furthermore, we merged the two PPI networks and obtained the core PPI network from the merged PPI network. The core PPI network had 132 nodes and 3339 edges. At last, we performed functional enrichment analyses including GO and KEGG pathway analysis in David database. GO analysis indicated that the biological processes were correlated with G1/S transition of mitotic cells cycle. KEGG pathway analysis found that the pathways directly associated with berberine against atherosclerosis were cell cycle, ubiquitin mediated proteolysis, MAPK signaling pathway, and PI3K-Akt signaling pathway. After combining the results in context with the available treatments for atherosclerosis, we considered that berberine inhibited inflammation and cell proliferation in the treatment of atherosclerosis. Our study provided a valid theoretical foundation for future research.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaoqun Feng ◽  
Min Zhao ◽  
Leiming Jiang ◽  
Ziang Hu ◽  
Xiaohong Fan

Objective. This study aimed to explore the mechanism of Modified Danggui Sini Decoction in the treatment of knee osteoarthritis via a combination of network pharmacology and molecular docking. Methods. The main chemical components and corresponding targets of Modified Danggui Sini Decoction were searched and screened in TCMSP database. The disease targets of knee osteoarthritis were summarized in GeneCards, OMIM, PharmGkb, TTD, and DrugBank databases. The visual interactive network of “drugs-active components-disease targets” was drawn by Cytoscape 3.8.1 software. The protein-protein interaction network was constructed by STRING database. Then, GO function and KEGG pathway enrichment were analyzed by Bioconductor/R, and the pathway of the highest degree of correlation with knee osteoarthritis was selected for specific analysis. Finally, molecular docking was used to screen and verify core genes by AutoDockTools software. Results. Seventy-one main components of Modified Danggui Sini Decoction and 116 potential therapeutic targets of knee osteoarthritis were selected. The KEGG pathway and the GO function enrichment analysis showed that the targets of Modified Danggui Sini Decoction in the treatment of knee osteoarthritis were mainly concentrated on PI3K-Akt signaling pathway, TNF signaling pathway, IL-17 signaling pathway, apoptosis signaling pathway, Toll-like receptor signaling pathway, Th17 cell differentiation signaling pathway, HIF-1 signaling pathway, and NF-κB signaling pathway. It mainly involved inflammatory reaction, regulation of apoptotic signaling pathway, cellular response to regulation of inflammatory response, cellular response to oxidative stress, and other biological processes. The molecular docking results showed that ESR1-wogonin, MAPK1-quercetin, RELA-wogonin, RELA-baicalein, TP53-baicalein, TP53-quercetin, and RELA-quercetin have strong docking activities. Conclusion. Modified Danggui Sini Decoction has the hierarchical network characteristics of “multicomponent, multitarget, multifunction, and multipathway” in the treatment of knee osteoarthritis. It mainly regulates the proliferation and apoptosis of chondrocytes by regulating the PI3K-Akt signaling pathway and establishes cross-talk with many downstream inflammatory-related pathways to reduce the overall inflammatory response. Meanwhile, HIF-1 expression was used to ensure the normal function and metabolism of knee joint under hypoxia condition, and the above processes play a key role in the treatment of knee osteoarthritis.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Meixiang Yu ◽  
Xin Song ◽  
Wanhua Yang ◽  
Ziwei Li ◽  
Xiaoqin Ma ◽  
...  

Compound XiongShao Capsule (CXSC), a traditional herb mixture, has shown significant clinical efficacy against diabetic peripheral neuropathy (DPN). However, its multicomponent and multitarget features cause difficulty in deciphering its molecular mechanisms. Our study aimed to identify the key active ingredients and potential pharmacological mechanisms of CXSC in treating DPN by network pharmacology and provide scientific evidence of its clinical efficacy. CXSC active ingredients were identified from both the Traditional Chinese Medicine Systems Pharmacology database, with parameters of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, and the Herbal Ingredients’ Targets (HIT) database. The targets of those active ingredients were identified using ChemMapper based on 3D-structure similarity and using HIT database. DPN-related genes were acquired from microarray dataset GSE95849 and five widely used databases (TTD, Drugbank, KEGG, DisGeNET, and OMIM). Next, we obtained candidate targets with therapeutic effects against DPN by mapping active ingredient targets and DPN-related genes and identifying the proteins interacting with those candidate targets using STITCH 5.0. We constructed an “active ingredients-candidate targets-proteins” network using Cytoscape 3.61 and identified key active ingredients and key targets in the network. We identified 172 active ingredients in CXSC, 898 targets of the active ingredients, 110 DPN-related genes, and 38 candidate targets with therapeutic effects against DPN. Three key active ingredients, namely, quercetin, kaempferol, and baicalein, and 25 key targets were identified. Next, we input all key targets into ClueGO plugin for KEGG enrichment and molecular function analyses. The AGE-RAGE signaling pathway in diabetic complications and MAP kinase activity were determined as the main KEGG pathway and molecular function involved, respectively. We determined quercetin, kaempferol, and baicalein as the key active ingredients of CXSC and the AGE-RAGE signaling pathway and MAP kinase activity as the main pharmacological mechanisms of CXSC against DPN, proving the clinical efficacy of CXSC against DPN.



2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.



Author(s):  
Feng Xu ◽  
Xiangpei Wang ◽  
Xiujuan Wei ◽  
Teng Chen ◽  
Hongmei Wu

Background: Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored. Methods: Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredient-target-disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed. Results: MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology. Conclusion: MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Huijing Zhu ◽  
Xin Zhu ◽  
Yuhong Liu ◽  
Fusong Jiang ◽  
Miao Chen ◽  
...  

Objective. The aim of this study was to identify the candidate genes in type 2 diabetes mellitus (T2DM) and explore their potential mechanisms. Methods. The gene expression profile GSE26168 was downloaded from the Gene Expression Omnibus (GEO) database. The online tool GEO2R was used to obtain differentially expressed genes (DEGs). Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Metascape for annotation, visualization, and comprehensive discovery. The protein-protein interaction (PPI) network of DEGs was constructed by using Cytoscape software to find the candidate genes and key pathways. Results. A total of 981 DEGs were found in T2DM, including 301 upregulated genes and 680 downregulated genes. GO analyses from Metascape revealed that DEGs were significantly enriched in cell differentiation, cell adhesion, intracellular signal transduction, and regulation of protein kinase activity. KEGG pathway analysis revealed that DEGs were mainly enriched in the cAMP signaling pathway, Rap1 signaling pathway, regulation of lipolysis in adipocytes, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on. On the basis of the PPI network of the DEGs, the following 6 candidate genes were identified: PIK3R1, RAC1, GNG3, GNAI1, CDC42, and ITGB1. Conclusion. Our data provide a comprehensive bioinformatics analysis of genes, functions, and pathways, which may be related to the pathogenesis of T2DM.



2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.



2020 ◽  
Author(s):  
Ling Zhang ◽  
Yunkai Dai ◽  
Yuping Li ◽  
Weijing Chen ◽  
Ruliu Li ◽  
...  

Abstract Background Chronic gastritis (CG) is an inflammatory disease which is one of the common diseases of the digestive system. To investigate the mechanisms of herbal pair Acoritataninowii Rhizoma(Shichangpu, AR) and Curcumae Radix༈Yujin, CR༉ in treatment of CG based on the network pharmacology. Methods The possible active ingredients and targets of AR-CR were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The UniProt database was used to query the human gene corresponding to each target protein. The genes related to CG were collected from the GeneCards database, the OMIM database, the DisGeNET database and the PharmGKB database. Intersected the target genes of AR-CR and CG, then protein-protein interaction(PPI) network was constructed by STRING website. The overlapped genes were subjected to gene ontology༈GO༉enrichment and Kyoto encyclopedia of genes and genomes༈KEGG༉pathway enrichment analyses by David. Results 45 intersection genes were obtained, and there were 40 targets in the PPI network for protein interaction, the kernel targets with Degree ≥ 10 included AKT1, TNF, JUN, MAPK3, MAPK8 and MAPK1. The Go enrichment analysis was mainly related to protein binding, enzyme binding, protein homodimerization activity, etc. The KEGG pathway enrichment analyses mainly involved the Pathways in cancer, TNF signaling pathway, Apoptosis, and VEGF signaling pathway. Conclusion AR-CR might delayed, blocked or reversed the atrophy, intestinal metaplasia, dysplasia and canceration of gastric mucosa by targeting key proteins and signal pathways,achieved the effect of the treatment of CG.



Sign in / Sign up

Export Citation Format

Share Document