scholarly journals Uranium Decontamination from Waste Soils by Chlorination with ZrCl4 in LiCl-KCl Eutectic Salt

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Junhyuk Jang ◽  
Tack-Jin Kim ◽  
Sungbin Park

The dissolution behavior of U, contained in the soils, was examined through chlorination with ZrCl4 to reduce the U concentration to clearance levels. Natural soils, composed of Si, Al, and approximately 2 ppm U, acted as surrogates for the contaminated soils. A salt mixture of LiCl-KCl-ZrCl4 was prepared in an Al2O3 crucible at 500°C, and SiO2 or natural soils were loaded for the chemical reactions. The reaction of SiO2 and Al2O3 with ZrCl4 was monitored by cyclic voltammetry, and no obvious change was observed. The results showed that SiO2 and Al2O3 were stable against ZrCl4. The reaction of natural soils with ZrCl4 indicated that the U content decreased from 2 to 1.2 ppm, while ∼0.4 ppm U appeared in the salt. Thus, the U, in the soils, dissolved into the salt by chlorination with ZrCl4. Therefore, based on these results, a new method to remediate U-contaminated soil wastes by chlorination with ZrCl4, followed by electrorefining of U, is suggested.

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 798
Author(s):  
Valentina Pidlisnyuk ◽  
Andriy Herts ◽  
Volodymyr Khomenchuk ◽  
Aigerim Mamirova ◽  
Oleksandr Kononchuk ◽  
...  

Miscanthus × giganteus (M. × giganteus) is a perspective plant produced on marginal and contaminated lands with biomass used for energy or bioproducts. In the current study, M. × giganteus development was tested in the diesel-contaminated soils (ranged from 250 mg kg−1 to 5000 mg kg−1) and the growth dynamic, leaves quantity, plants total area, number of harvested stems and leaves, SPAD and NPQt parameters were evaluated. Results showed a remarkable M. × giganteus growth in a selected interval of diesel-contaminated soil with sufficient harvested biomass. The amendment of soil by biochar 1 (produced from wastewater sludge) and biochar 2 (produced from a mixture of wood waste and biohumus) improved the crop’s morphological and physiological parameters. Biochar 1 stimulated the increase of the stems’ biomass, while biochar 2 increased the leaves biomass. The plants growing in the uncontaminated soil decreased the content of NO3, pH (KCl), P2O5 and increased the content of NH4. Photosynthesis parameters showed that incorporating biochar 1 and biochar 2 to the diesel-contaminated soil prolonged the plants’ vegetation, which was more potent for biochar 1. M. × giganteus utilization united with biochar amendment can be recommended to remediate diesel-contaminated land in concentration range 250–5000 mg kg−1.


2008 ◽  
Vol 587-588 ◽  
pp. 109-113
Author(s):  
C. Teixeira ◽  
P. Parpot ◽  
Isabel Neves ◽  
António Maurício C. Fonseca

CoPAN complex has been entrapped in the supercages of Y zeolite and the redox properties of this zeolite-encapsulated complex were investigated by cyclic voltammetry with a new method for the preparation of carbon toray-zeolite-modified electrode. Formation of the CoPAN complex was ascertained by surface analysis (SEM, XRD), chemical analysis (CA), spectroscopy methods (FTIR and UV/vis) and cyclic voltammetry in aqueous medium with zeolite-modified electrodes. The cyclic voltammetry studies obtained with a zeolite-modified electrode shows evidence for electroactivity restricted to boundary associated CoPAN complex.


2021 ◽  
Vol 8 (4) ◽  
pp. 986-999
Author(s):  
Ting Wu ◽  
Yangzhi Liu ◽  
Kun Yang ◽  
Lizhong Zhu ◽  
Jason C. White ◽  
...  

This work provides a new strategy using nanomaterial-facilitated phytoremediation to promote the restoration of POP-contaminated soils.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


2018 ◽  
Vol 777 ◽  
pp. 256-261 ◽  
Author(s):  
André Ribeiro ◽  
André Mota ◽  
Margarida Soares ◽  
Carlos Castro ◽  
Jorge Araújo ◽  
...  

Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg-1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. It was obtained high removal rates of lead in both experiments, especially near the cathode. In the normalized distance to cathode of 0.2 it was achieved a maximum removal rate of lead (II) of 68, 78 and 83% in initial lead (II) concentration of 500 mg-1, 200 mg-1 and 100 mg-1, respectively. EGGIF (Eggshell Inorganic Fraction) proved that can be used as permeable reactive barrier (PRB) since in all the performed tests were achieved adsorptions yields higher than 90%.


2015 ◽  
Vol 768 ◽  
pp. 150-154
Author(s):  
Yi Yun Liu ◽  
Shuang Cui ◽  
Qing Han ◽  
Qian Ru Zhang

Due to the influence of human, industrial and agricultural activity, a large amount of toxic and harmful heavy metal enter into the soil environment. Heavy metal can easily bio-accumulate through food chain, which cause serious damage to human health. Phytoremediation emerges as a new technology in exploration of effective methods for remediation and rebuild of heavy metal contaminated soils. Although phytoremediation shows great potential in remediation of heavy metal contaminated soil, there still exists many problems in practical application. This article analysis the problems existing in phytoremediation, summarizes the research progress of the technology in application from all the perspective of phytoremediation processes.


2020 ◽  
Vol 58 (5A) ◽  
pp. 10
Author(s):  
Van Minh Dang ◽  
Huu Tap Van ◽  
Thi Bich Hanh Nguyen ◽  
Dinh Vinh Nguyen ◽  
Thị Tuyet Nguyen ◽  
...  

This work investigated the effects of soil pH and the content ratio of natural zeolite on Cr contaminated soil. The immobilization experiments of the exchangeable Cr in contaminated soils were conducted using the batch method. The incubation experiments were carried out over 30 days in plastic bottles to determine five fraction of Cr existence (exchangeable fraction (F1), Fe/Mn/Oxide (F2), carbonate bound (F3), organic matters (F4) and residual (F5)) in amended soils after incubation. Results showed that the content and proportion of the exchangeable Cr decreased with an increase in soil pH from 5 to 9. At soil pH 5, the exchangeable Cr in soil reduced from 44.80±0.772 mg/kg (initial soil) to 17.72±0.300 mg/kg after 30 days of incubation with natural Zeolite 3%. Meanwhile, the exchangeable Cr of soil also decreased with increasing the content ratio of natural zeolite from 1% to 5% in soil. The ratio of 3% was suitable for incubation of the exchangeable Cr in contaminated soil with natural zeolite. The exchangeable Cr in contaminated soil decreased from 80.34% at un-amended soil treatment to 25.06% after incubation of 30 days. The forms of carbonate bound (F3) and organic matters (F4) in amended soils increased to 36.54% and 28% compared with 4.26% and 6.90% in un-amended contaminated soil. Ion exchange, precipitation and adsorption on the surface of natural zeolite  might be the potential mechanisms of immobilization of the exchangeable Cr. The results indicated that natural zeolite can be used as the effective adsorbent for immobilizing the exchangeable Cr in contaminated soils and leading to a decrease in the environmental risk from Cr toxicity.


Author(s):  
Yu. Veriuzhsky ◽  
O. Hrynko ◽  
V. Tokarevsky

Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed.


Sign in / Sign up

Export Citation Format

Share Document