scholarly journals Fluoride and Arsenite Removal by Adsorption on La2O3-CeO2/Laterite

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Duong Thi Lim ◽  
Trinh Ngoc Tuyen ◽  
Dao Ngoc Nhiem ◽  
Dao Hong Duc ◽  
Pham Ngoc Chuc ◽  
...  

In the present article, the adsorbent prepared from laterite with lanthanum and cerium oxides (La2O3-CeO2/laterite (LCL)) was efficiently employed for the removal of arsenite and fluoride from an aqueous environment. The obtained materials were characterized by XRD, SEM, and nitrogen adsorption/desorption. The synthesized LCL exhibited a high adsorption capacity towards arsenite (As(III)) and fluoride. The adsorption of both analytes on LCL, which was well-fitted to a pseudo-second-order equation, was found to be kinetically fast in the first 20 minutes and reached equilibrium at around 180 minutes. Weber’s intraparticle diffusion model in multilinearity using the piecewise linear regression combined with Akaike’s criteria was addressed. The adsorption capacities of LCL calculated from Langmuir’s isotherm model were found to be 67.08 mg·g-1 for arsenite and 58.02 mg·g-1 for fluoride. Thermodynamic parameters presented an endothermic nature of arsenite adsorption but an exothermic nature for fluoride and a negative Gibbs free energy for the spontaneous process of arsenite or fluoride adsorption at the studied temperature range. The excellent adsorption performance and stability make the composite of laterite and La-Ce binary oxides an alternative efficient and cheap adsorbent for the removal of arsenite and fluoride in an aqueous solution.

2019 ◽  
Vol 9 (4) ◽  
pp. 323-334 ◽  
Author(s):  
Zeinab Hoseini Dastgerdi ◽  
Seyyed Salar Meshkat ◽  
Mehdi D. Esrafili

AbstractThe present work considers an adsorptive removal of Indigo carmine (IC) dye onto nanotube carbon (CNTs). The pure CNTs were prepared via chemical vapor deposition (CVD) method utilizing methane gas as a carbon source at 1000 °C in a quartz tube. The morphology and surface chemical structure of the adsorbents were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption technique, and thermal gravity analysis (TGA). The parameters of the IC dye adsorption, such as initial concentration, contact time, pH, and mass-loaded adsorbent, were evaluated. The kinetic study confirmed that a pseudo-second-order model was best fitted to the adsorption data. The removal efficiency of adsorption onto pure and COOH-functionalized CNTs was 84% and 98.7% at 15 min, respectively. The equilibrium results were fitted well to the Langmuir isotherm model. The adsorption capacity of the CNT and COOH–CNT was 88.5 and 136 mg/g, respectively. The reusability of the adsorbents was studied, and after eight cycles, the efficiency decreased to 70%. Moreover, the density functional theory calculations confirmed that the functionalization of CNTs with COOH groups improves the adsorption properties of IC due to the formation of hydrogen-bonding interactions.


2010 ◽  
Vol 113-116 ◽  
pp. 775-779 ◽  
Author(s):  
Yan Liu ◽  
Yun Wang ◽  
Xiao Jie Zhang ◽  
Ji Min Xie ◽  
Yong Sheng Yan

Mesoporous silica SBA-15 has been prepared rapidly under normal pressure by microwave irradiation method. The textural properties were studied by low-angle X-ray diffraction (XRD) and nitrogen adsorption-desorption. The optimum adsorption conditions of Pb(Ⅱ) on SBA-15 was investigated. The results show that the adsorption kinetics follows a pseudo-second-order rate model and the experimental equilibrium data is fitted well by Langmuir adsorption isotherm. The adsorption capacity reaches 50.10 mg•g-1 which is much higher than that of hydrothermal synthesized samples. This adsorbent has been applied in the determination of Pb(Ⅱ) in river sediments samples.


2020 ◽  
Vol 42 (4) ◽  
pp. 550-550
Author(s):  
Houria Rezala Houria Rezala ◽  
Houda Douba Houda Douba ◽  
Horiya Boukhatem and Amaya Romero Horiya Boukhatem and Amaya Romero

A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and BET surface area and consequently the improvement of its capacities adsorption and decolorization of Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms were well fitted by pseudo-second order and Freundlich models, respectively. In addition to that, thermodynamic studies showed an exothermic and a spontaneous process.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2584
Author(s):  
Katarzyna Szewczuk-Karpisz ◽  
Agnieszka Tomczyk ◽  
Magdalena Celińska ◽  
Zofia Sokołowska ◽  
Marcin Kuśmierz

The study focused on the adsorption mechanism of two selected pesticides: carboxin and diuron, on goethite and biochar, which were treated as potential compounds of mixed adsorbent. The authors also prepared a simple mixture of goethite and biochar and performed adsorption measurements on this material. The adsorbents were characterized by several methods, inter alia, nitrogen adsorption/desorption, Boehm titration, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption study included kinetics and equilibrium measurements, in the solution containing one or two pesticides simultaneously. The adsorption data were fitted to selected theoretical models (e.g., Langmuir, Freudlich, Redlich–Peterson, pseudo first-order and pseudo second-order equations). Based on the obtained results, it was stated that, among all tested adsorbents, biochar had the highest adsorption capacity relative to both carboxin and diuron. It equaled 0.64 and 0.52 mg/g, respectively. Experimental data were best fitted to the pseudo second-order and Redlich–Peterson models. In the mixed systems, the adsorption levels observed on biochar, goethite and their mixture were higher for diuron and lower for carboxin, compared to those noted in the single solutions. The presented results may enable the development of new mixed adsorbent for remediation of soils polluted with pesticides.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 643 ◽  
Author(s):  
Lidia Bandura ◽  
Małgorzata Franus ◽  
Jarosław Madej ◽  
Dorota Kołodyńska ◽  
Zbigniew Hubicki

Nowadays, the contamination of water with phenol is a serious environmental problem. This compound occurs very often with heavy metal ions which makes purification of water even more difficult. This article presents the problem of the removal of phenol from aqueous solutions in the presence of Cu(II) ions on synthetic zeolite NaP1 and zeolite NaP1 modified with chitosan. The adsorbents were determined with the use of Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM). The studies on isotherms and batch kinetics under diversified experimental conditions with respect to initial concentration, contact time, and pH were discussed. Both Cu(II) and phenol adsorption increases with the initial concentration. Different isotherm models correspond well with the data acquired through experiments. The kinetics of adsorption follows the pseudo-second order rate equation. The studies indicate that the obtained sorbents can be employed for efficient removal of phenol from wastewater in the presence of Cu(II) ions.


2021 ◽  
Vol 22 (7) ◽  
pp. 3447
Author(s):  
Sihan Feng ◽  
Xiaoyu Du ◽  
Munkhpurev Bat-Amgalan ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
...  

Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA–CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer–Emmet–Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA–CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g−1 for La(III), 270.3 mg g−1 for Eu(III), and 294.1 mg g−1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA–CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA–CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.


Author(s):  
Mukhamad Nurhadi ◽  
Iis Intan Widiyowati ◽  
Wirhanuddin Wirhanuddin ◽  
Sheela Chandren

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. Copyright © 2019 BCREC Group. All rights reservedReceived: 20th April 2018; Revised: 28th August 2018; Accepted: 4th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Nurhadi, M., Widiyowati, I.I., Wirhanuddina, W., Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 17-27 (doi:10.9767/bcrec.14.1.2548.17-27)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2548.17-27 


2013 ◽  
Vol 781-784 ◽  
pp. 1958-1962
Author(s):  
Li Jun Luo ◽  
Yong Liu ◽  
Qiao Ling Li ◽  
Jing Chi Mo

By using natural bamboo as biotemplate, we synthesized mesoporous silica by Hydrothermal method followed by calcination at 650°C. And it was functionalized with aminopropyltriethoxysilane (APTS) in dry toluene under nitrogen atmosphere. As-synthesized Amino-functionalized mesoporous silica (NH2-MS) were characterized by scanning electron microscope (SEM), nitrogen adsorption/desorption (BET), Fourier transform infrared spectra (FT-IR).The results indicated that the obtained particles retained the morphology of bamboo and possessed mesoporous structrure. Adsorption measurement results indicates the Pb (II) adsorption isotherm fits Freundlich model and maximum adsorption capacity of 143.4mg/g, the pseudo second-order kinetic model provided the best fit to the experimental data.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3046 ◽  
Author(s):  
Nadine Bou Orm ◽  
Quoc Trieu ◽  
Stephane Daniele

A robust sol-gel process was developed for the synthesis of surface-functionalized titania nanocrystallites bearing unsaturated groups starting from molecular heteroleptic single-source precursors. Molecules and nanomaterials were thoroughly characterized by multinuclear liquid and solid-state nuclear magnetic resonance (NMR), infra-red (FT-IR, DRIFT) spectroscopies. Nitrogen adsorption-desorption (BET), thermogravimetric (TG) and elemental analyses demonstrated the reliability and the fine tuning of the surface functionalization in terms of ratio TiO2:ligand. The as-prepared materials were used as nano-adsorbents to remove mixture of 16 polycyclic aromatic hydrocarbon (PAHs) from aqueous solutions. Adsorption kinetic experiments were carried out for 24 h in solutions of one PAH [benzo(a)pyrene, 220 ppb] and of a mixture of sixteen ones [220 ppb for each PAH]. Most kinetic data best fitted the pseudo-second order model. However, in PAHs mixture, a competition process took place during the first hours leading to a remarkable high selectivity between light and heavy PAHs. This selectivity could be fine-tuned depending on the nature of the unsaturated group of the phosphonate framework and on the nanomaterial textures.


Author(s):  
Xiao-Dong Li ◽  
Qing-Zhou Zhai

Abstract The nano-mesoporous material SBA (Santa Barbara Amorphous)-15 was synthesized using the hydrothermal method. Hg2+ was adsorbed by SBA-15 and then the S2− in the aqueous phase by (SBA-15)-Hg(II), with the hope that materials with better S2− adsorption properties can be obtained. The relevant materials were characterized by X-ray diffraction, scanning electron microscopy, 77 K nitrogen adsorption-desorption, and related product characteristics were determined. In this work, the adsorption conditions of S2− onto (SBA-15)-Hg(II) were optimized. Adsorption efficiency reached about 92% and the adsorption capacity 55.02 mg/g. Studies of the system's adsorption kinetics showed that the pseudo-second-order equation applies. The thermodynamic results indicated that ΔG0 < 0, ΔH0 = −28.56 kJ/mol, ΔS0 = −81.136 J/(mol·K), and that adsorption is exothermic, enthalpy decreases and the reaction is spontaneous. This accords with Freundlich isothermal adsorption equation.


Sign in / Sign up

Export Citation Format

Share Document