scholarly journals FAM3A Protects HT22 Cells Against Hydrogen Peroxide-Induced Oxidative Stress Through Activation of PI3K/Akt but not MEK/ERK Pathway

2015 ◽  
Vol 37 (4) ◽  
pp. 1431-1441 ◽  
Author(s):  
Qing Song ◽  
Wen-Li Gou ◽  
Rong Zhang

Background/Aims: Oxidative stress-induced cell damage is involved in many neurological diseases. FAM3A is the first member of family with sequence similarity 3 (FAM3) gene family and its biological function remains largely unknown. Methods: This study aimed to determine its role in hydrogen peroxide (H2O2) induced injury in neuronal HT22 cells. The protective effects were measured by cell viability, lactate dehydrogenase (LDH) release and apoptosis, and oxidative stress was assayed by reactive oxygen species (ROS) generation, ATP synthesis and lipid peroxidation. By using selective inhibitors, the involvement of PI3K/Akt and MEK/ERK pathways were also investigated. Results: The results of fluorescence staining revealed that H2O2 significantly decreased the expression of FAM3A protein, which was shown to be subcellularly located in mitochondria. Up-regulation of FAM3A by lentivirus transfection markedly increased cell viability and decreased LDH release after H2O2 treatment. The anti-apoptotic activity of FAM3A was demonstrated by the reduced mitochondrial cytochrome c release, decreased activation of caspase-3 and the results of flow cytometry. Overexpression of FAM3A attenuated intracellular ROS generation and loss of ATP production induced by H2O2, and subsequently inhibited lipid peroxidation. In addition, overexpression of FAM3A significantly increased the activation of Akt and ERK in H2O2 injured HT22 cells. By using Akt and ERK specific inhibitors, we found that inhibition of PI3K/Akt, but not MEK/ERK pathway, partially prevented FAM3A-induced protection against H2O2. Conclusion: These results suggest that FAM3A has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on the activation of PI3K/Akt pathway.

2013 ◽  
Vol 41 (02) ◽  
pp. 425-441 ◽  
Author(s):  
Tong Ho Kang ◽  
Bin Na Hong ◽  
Su-Young Jung ◽  
Jeong-Han Lee ◽  
Hong-Seob So ◽  
...  

Cisplatin is commonly used as a chemotherapeutic agent against many human cancers. However, it generates reactive oxygen species (ROS) and has serious dose-limiting side effects, including ototoxicity. The roots of Curculigo orchioides (C. orchioides) have been used to treat auditory diseases such as tinnitus and hearing loss in Chinese traditional medicine. In the present study, we investigated the protective effects of an ethanol extract obtained from C. orchioides rhizome (COR) on cisplatin-induced cell damage in auditory cells (HEI-OC1). COR (2.5–25 μg/ml) inhibited cisplatin-induced HEI-OC1 cell damage in a dose-dependent manner. To investigate the protective mechanism of COR on cisplatin cytotoxicity in HEI-OC1 cells, we measured the effects of COR on ROS generation and lipid peroxidation in cisplatin-treated cells as well as its scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals. COR (1–25 μg/ml) had scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals, as well as reduced lipid peroxidation. In in vivo experiments, COR was shown to reduce cochlear and peripheral auditory function impairments through cisplatin-induced auditory damage in mice. These results indicate that COR protects from cisplatin-induced auditory damage by inhibiting lipid peroxidation and scavenging activities against free radicals.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dong Wang ◽  
Bibo Gao ◽  
Tao Yang ◽  
Huiying Sun ◽  
Xiaoping Ran ◽  
...  

Notoginsenoside R1 (NGR1) is an active compound isolated from Panax notoginseng. Despite the NGR1 having been used as a traditional medicine, little is known about the neuroprotective effects. In this study, we investigate the protective effects of NGR1 against glutamate-induced cytotoxicity in HT22 cells and its possible molecular mechanism. We assessed the toxicity of NGR1 and the protective activity by MTT assay. The levels of oxidative stress indices superoxide dismutase (SOD), glutathione (GSH), and mitochondrial membrane potential (MMP) were measured by the kits. The levels of reactive oxygen species (ROS) and Ca2+ concentration were measured by flow cytometry. Furthermore, we determined the expression of mitochondrial dysfunction related protein PINK1, Parkin, silent mating type information regulation 2 homolog-1 (sirtuin 1; SIRT1), and Wnt/β-catenin by Western blotting. Here, we discovered that glutamate treatment led to cell viability loss, apoptosis facilitation, Ca2+ upregulation, MMP fluorescence intensity downregulation, and ROS generation of HT22 cells. In parallel, expression of Parkin was declined by glutamate. While, NGR1 treatment alleviated all the above phenomena. We further clarified that NGR1 alleviated glutamate-induced oxidative stress, apoptosis, and mitochondrial dysfunction by upregulating SIRT1 to activate Wnt/β-catenin pathways. These findings demonstrate that NGR1 alleviated glutamate-induced cell damage, and NGR1 may play a protective role in neurological complications.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Ji Jia ◽  
Lei Ma ◽  
Mingchun Wu ◽  
Lei Zhang ◽  
Xiajing Zhang ◽  
...  

Background.Endogenous cannabinoid anandamide (AEA) protects neurons from oxidative injury in rodent models; however the mechanism of AEA-induced neuroprotection remains to be determined. Activation of neuronal NADPH oxidase 2 (Nox2) contributes to oxidative damage of the brain, and inhibition of Nox2 can attenuate cerebral oxidative stress. We aimed to determine whether the neuronal Nox2 was involved in protection mediated by AEA.Methods.The mouse hippocampal neuron cell line HT22 was exposed to hydrogen peroxide (H2O2) to mimic oxidative injury of neurons. The protective effect of AEA was assessed by measuring cell metabolic activity, apoptosis, lactate dehydrogenase (LDH) release, cellular morphology, intracellular reactive oxygen species (ROS), and antioxidant and oxidant levels and Nox2 expression.Results.HT22 cells exposed to H2O2demonstrated morphological changes, decreased LDH release, reduced metabolic activity, increased levels of intracellular ROS and oxidized glutathione (GSSG), reduced levels of superoxide dismutase (SOD), and reduced glutathione (GSH) and increased expression of Nox2. AEA prevented these effects, a property abolished by simultaneous administration of CB1 antagonist AM251 or CB1-siRNA.Conclusion.Nox2 inhibition is involved in AEA-induced cytoprotection against oxidative stress through CB1 activation in HT22 cells.


2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


2020 ◽  
Vol 26 (33) ◽  
pp. 4185-4194
Author(s):  
Jing-Jing Zhu ◽  
Shu-Hui Wu ◽  
Xiang Chen ◽  
Ting-Ting Jiang ◽  
Xin-Qian Li ◽  
...  

Background: The aim of the present study was to investigate the protective effects of Tanshinone IIA (Tan IIA) on hypoxia-induced injury in the medial vestibular nucleus (MVN) cells. Methods: An in vitro hypoxia model was established using MVN cells exposed to hypoxia. The hypoxia-induced cell damage was confirmed by assessing cell viability, apoptosis and expression of apoptosis-associated proteins. Oxidative stress and related indicators were also measured following hypoxia modeling and Tan IIA treatment, and the genes potentially involved in the response were predicted using multiple GEO datasets. Results: The results of the present study showed that Tan IIA significantly increased cell viability, decreased cell apoptosis and decreased the ratio of Bax/Bcl-2 in hypoxia treated cells. In addition, hypoxia treatment increased oxidative stress in MVN cells, and treatment with Tan IIA reduced the oxidative stress. The expression of SPhase Kinase Associated Protein 2 (SKP2) was upregulated in hypoxia treated cells, and Tan IIA treatment reduced the expression of SKP2. Mechanistically, SKP2 interacted with large-conductance Ca2+-activated K+ channels (BKCa), regulating its expression, and BKCa knockdown alleviated the protective effects of Tan IIA on hypoxia induced cell apoptosis. Conclusion: The results of the present study suggested that Tan IIA had a protective effect on hypoxia-induced cell damage through its anti-apoptotic and anti-oxidative activity via an SKP2/BKCa axis. These findings suggest that Tan IIA may be a potential therapeutic for the treatment of hypoxia-induced vertigo.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 252
Author(s):  
Sakan Warinhomhoun ◽  
Chawanphat Muangnoi ◽  
Visarut Buranasudja ◽  
Wanwimon Mekboonsonglarp ◽  
Pornchai Rojsitthisak ◽  
...  

Five compounds including a new bisbibenzyl named dendropachol (1) and four known compounds (2–5) comprising 4,5-dihydroxy-2,3-dimethoxy-9,10-dihydrophenanthrene (2), gigantol (3), moscatilin (4) and 4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (5) were isolated from a methanolic extract of Dendrobium pachyglossum (Orchidaceae). The chemical structures of the isolated compounds were characterized by spectroscopic methods. Dendropachol (1) was investigated for its protective effects on hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT keratinocytes. Compound 1 showed strong free radical scavenging compared to the positive control. For the cytoprotective effect, compound 1 increased the activities of GPx and CAT and the level of GSH but reduced intracellular reactive oxygen species (ROS) generation and accumulation. In addition, compound 1 significantly diminished the expression of p53, Bax, and cytochrome C proteins, decreased the activities of caspase-3 and caspase-9, and increased Bcl-2 protein. The results suggested that compound 1 exhibited antioxidant activities and protective effects in keratinocytes against oxidative stress induced by H2O2.


Author(s):  
Weiran Dai ◽  
Shuang Zhou ◽  
Guoqiang Zhong ◽  
Zhiyuan Jiang

IntroductionRecently, enhanced activation of NLRP3 has been reported to be involved in atrial fibrillation (AF). This study aimed to detect the correlation between oxidative stress and NLRP3 and explore the role of miR-223-3p in the injury of ROS induced by Ang II.Material and methodsSerum Ang II levels were examined by ELISA kit. Fibrosis levels of right atrial appendages were determined by Masson’s staining. H9c2 cells tansfected with miR-223-3p mimics were treated with Ang II with or without MCC950 (a potent selective NLRP3 inhibitor). Cell viability was detected by CCK-8 assay. Protein abundance was detected by Western blot. MDA assay and DCFH-DA were used to measured oxidative stress. RT-qPCR was used to assay the expression of miR-223-3p and NLRP3.ResultsTotally, 43 patients enrolled in this study, including 20 patients with persistent (chronic) AF (cAF). Comparing with sinus rhythm (SR) group, we found an enhanced activation of NLRP3 inflammasome which were positively correlated with oxidative stress and serum Ang II level in cAF patients. Ang II induced ROS generation and inhibited the H9c2 cell viability. In addition, overexpression of miR-223-3p functioned as MCC950 which inhibited the expression of NLRP3 inflammasome and partly attenuated the effects of ROS induced by Ang II on H9c2 cell viability. Lastly, we used luciferase assay to confirm NLRP3 as a direct target gene of miR-223-3p.ConclusionsmiR-223-3p has protective effects on oxidative stress induced by Ang II in AF by targeting NLRP3 and could provide a new potential intervention targets for treatment of AF.


2017 ◽  
Vol 36 (9) ◽  
pp. 967-980 ◽  
Author(s):  
SB Mada ◽  
S Reddi ◽  
N Kumar ◽  
S Kapila ◽  
R Kapila

Oxidative stress inhibits osteoblast differentiation and function that lead to the development of osteoporosis. Casein-derived peptide VLPVPQK (PEP), a potent antioxidant, was isolated from β-casein of buffalo milk. We used an in vitro oxidative stress model induced by hydrogen peroxide (H2O2) in rat osteoblastic cells to investigate the protective effects of PEP against H2O2-induced dysfunction and oxidative damage. Cells were pretreated with PEP (50–200 ng/mL) for 2, 7 or 21 days followed by 0.3 mM H2O2 treatment for 24 h and then markers of osteogenic development, oxidative damage and apoptosis were examined. PEP significantly increased the viability and differentiation markers of osteoblast cells such as alkaline phosphatase and calcium mineralization. Moreover, PEP suppressed the production of reactive oxygen species (ROS), lipid peroxidation and ameliorated H2O2-induced reduction in glutathione, superoxide dismutase and catalase activities. In addition, PEP partially inhibited caspase-9 and-3 activities and reduced propidium iodide–positive cells. Altogether, our results demonstrated that PEP could protect rat osteoblast against H2O2-induced dysfunction and oxidative damage by reduction of ROS production, lipid peroxidation and increased antioxidant enzyme activities. Thus, our data suggest that PEP might be a valuable protective agent against oxidative stress–related diseases such as osteoporosis.


2021 ◽  
pp. 096032712110237
Author(s):  
Y-J Li ◽  
D-Z Zhang ◽  
Y Xi ◽  
C-A Wu

Objective: To explore the mechanism of dexmedetomidine (DEX)-mediated miR-134 inhibition in hypoxia-induced damage in PC12 cells. Methods: Hydrogen peroxide (H2O2)-stimulated PC12 cells were divided into control, H2O2, DEX + H2O2, miR-NC/inhibitor + H2O2, and miR-NC/ mimic + DEX + H2O2 groups. Cell viability and apoptosis were assessed by the 3-(4,5-dimethylthiazol(-2-y1)-2,5-diphenytetrazolium bromide (MTT) assay and Annexin V-FITC/PI staining, while gene and protein expression levels were detected by qRT-PCR and western blotting. Reactive oxygen species (ROS) levels were tested by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) staining, and malondialdehyde (MDA) content was determined with a detection kit. Results: DEX treatment decreased H2O2-elevated miR-134 expression. H2O2-induced PC12 cell damage was improved by DEX and miR-134 inhibitor; additionally, cell viability was increased, while cell apoptosis was reduced. In addition, both DEX and miR-134 inhibitor reduced the upregulated expression of cleaved caspase-3 and increased the downregulated expression of Bcl-2 in H2O2-induced PC12 cells. However, compared to that in the DEX + H2O2 group, cell viability in the mimic + DEX + H2O2 group was decreased, and the apoptotic rate was elevated with increased cleaved caspase-3 and decreased Bcl-2 expression. Inflammation and oxidative stress were increased in H2O2-induced PC12 cells but improved with DEX or miR-134 inhibitor treatment. However, this improvement of H2O2-induced inflammation and oxidative stress induced by DEX in PC12 cells could be reversed by the miR-134 mimic. Conclusion: DEX exerts protective effects to promote viability and reduce cell apoptosis, inflammation, and oxidative stress in H2O2-induced PC12 cells by inhibiting the expression of miR-134.


Sign in / Sign up

Export Citation Format

Share Document