scholarly journals Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation

2016 ◽  
Vol 39 (6) ◽  
pp. 2287-2296 ◽  
Author(s):  
Eva B Znalesniak ◽  
Ting Fu ◽  
Karina Guttek ◽  
Ulrike Händel ◽  
Dirk Reinhold ◽  
...  

Background/Aims: The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Methods: Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. Results: We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. Conclusion: The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals.

2021 ◽  
Vol 10 (14) ◽  
pp. 3142
Author(s):  
Batoul Wehbi ◽  
Virginie Pascal ◽  
Lina Zawil ◽  
Michel Cogné ◽  
Jean-Claude Aldigier

IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. It was first described in 1968 by Jean Berger and Nicole Hinglais as the presence of intercapillary deposits of IgA. Despite this simple description, patients with IgAN may present very broad clinical features ranging from the isolated presence of IgA in the mesangium without clinical or biological manifestations to rapidly progressive kidney failure. These features are associated with a variety of histological lesions, from the discrete thickening of the mesangial matrix to diffuse cell proliferation. Immunofluorescence on IgAN kidney specimens shows the isolated presence of IgA or its inconsistent association with IgG and complement components. This clinical heterogeneity of IgAN clearly echoes its complex and multifactorial pathophysiology in humans, inviting further analyses of its various aspects through the use of experimental models. Small-animal models of IgAN provide the most pertinent strategies for studying the multifactorial aspects of IgAN pathogenesis and progression. Although only primates have the IgA1 subclass, several murine models have been developed in which various aspects of immune responses are deregulated and which are useful in the understanding of IgAN physiopathology as well as in the assessment of IgAN therapeutic approaches. In this manuscript, we review all murine IgAN models developed since 1968 and discuss their remarkable contribution to understanding the disease.


2010 ◽  
Vol 46 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Daiane Hansen ◽  
Mitsue Haraguchi ◽  
Antonio Alonso

The plant of the genus Pterodon (Fabaceae, Leguminosae), commonly known as 'sucupira' or 'faveira', are disseminated throughout the central region of Brazil and has frequently been used in popular medicine for its anti-rheumatic, analgesic, and anti-inflammatory properties. In recent years, interest in these plants has increased considerably. The biological effects of different phytoextracts and pure metabolites have been investigated in several experimental models in vivo and in vitro. The literature describes flavonoids, triterpene and steroids, while one paper presented studies with proteins isolated from the genus. This review provides an overview of phytochemical and pharmacological research in Pterodon, showing the main chemical compounds studied to date, and focusing on the relationship between these molecules and their biological activity. Furthermore, this study paves the way for more in-depth investigation, isolation and characterization of the molecules of this plant genus.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2920-2920
Author(s):  
Marianna Romzova ◽  
Dagmar Smitalova ◽  
Peter Taus ◽  
Jiri Mayer ◽  
Martin Culen

BACKGROUND: Bcr-abl1 oncogene targeted treatment with tyrosine kinase inhibitors (TKI) showed an impressive efficacy against proliferating chronic myeloid leukemia (CML) cells. However, rapid relapses in more than half of CML patients after discontinuation of the treatment suggest a presence of quiescent leukemic stem cells inherently resistant to BCR-ABL1 inhibition. Understanding the heterogeneity of CML stem cell compartment is crucial for preventing the treatment failure. Specificity of already established leukemic stem cell (LSC) markers has been tested mainly in bulk CD34+CD38- populations at diagnosis. Phenotypes and molecular signatures of therapy resistant BCR ABL1 positive stem cells is however yet to be established. AIMS: Identification of BCR-ABL1 dependent LSC markers at single cell level by direct comparison their surface and transcript expression with the levels and the presence of BCR-ABL1 transcript at diagnosis and after administration of TKI treatment. METHODS: Total number of 375 cells were obtained from bone marrow and peripheral blood of 4 chronic phase CML patients. Cells were collected prior any treatment and three months after TKI treatment initiation. Normal bone marrow cells and BCR-ABL1 positive K562 cell line were used as controls. Indexed immuno-phenotyping and sorting of CD34+CD38- single cells was performed using a panel of 11 specific surface markers. Collected single cells were lysed and cDNA was enriched for 11 targets using 22 cycle pre-amplification. Expression profiling was carried on SmartChip real-time PCR system (Takara Bio) detecting following genes: BCR-ABL1, CD26, CD25, IL1-Rap, CD56, CD90, CD93, CD69, KI67, and control genes GUS and HPRT. Unsupervised clustering was performed using principal component analysis (PCA). Correlations were measured by Spearman rank method. RESULTS: At diagnosis, majority of BCR-ABL1+ C34+CD38- stem cells co-express IL1-Rap, CD26, and CD69 on their surface (88%, 82%, 78% overlap). Only 56% of BCR-ABL1+ cells positive for aforementioned markers co-express CD25, 28% CD93 and 16% CD56. The expression of these markers could also be detected in 4-11% of BCR-ABL1- cell, although this could be technical inaccuracy caused by the single cell profiling. CD90 marker did not show any correlation with BCR-ABL1 expression. At transcript level the expression of IL-1Rap, CD26, CD25 and CD56 was observed in 62%, 52% 45% and 16% BCR-ABL1+ cells, and up to 7% of BCR-ABL1- cells. CD69 expression was observed in 90% of BCR-ABL+ cells at transcript level, but also in 71% BCR-ABL- cells. BCR-ABL1 independent expression was observed for cKIT. (60% vs. 76 % in positive vs negative). Finally proliferation marker KI67 was expressed only in 6% of the BCR-ABL1+ cells. PCA analysis divided cells into several distinct clusters with BCR-ABL1 as the main contributor, and cKIT, CD69 and CD26, IL-1RAP as other significant factors. Interestingly BCR-ABL1+ cells collected during TKI treatment showed persistent surface expression of IL-1Rap and CD26, while CD56, CD69 and CD93 were only on part of the BCR-ABL1+ cells. CD25 was significantly deregulated during TKI treatment. CONCLUSION: At diagnosis up to 80% of LSC co-express 3 specific surface markers - IL-1RAP, CD26 and CD69. Variable portion of LSC co-express additional markers such are CD25, CD56 and CD93. During TKI treatment the surface expression of majority of markers is decreased, where the best correlated LSC marker is IL-1Rap, followed by CD26 and CD69. CD56 marker seems to persist in the same proportion of cells while CD25 disappears. cKIT is highly expressed in normal BM and HSC from CML patients, but also in some LSC. CD34+CD38- cells show non-proliferating phenotype. Disclosures Mayer: AOP Orphan Pharmaceuticals AG: Research Funding.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Izabella Lice ◽  
José Marcos Sanches ◽  
Rebeca D. Correia-Silva ◽  
Mab P. Corrêa ◽  
Marcelo Y. Icimoto ◽  
...  

Formyl peptide receptors (Fprs) are a G-protein-coupled receptor family mainly expressed on leukocytes. The activation of Fpr1 and Fpr2 triggers a cascade of signaling events, leading to leukocyte migration, cytokine release, and increased phagocytosis. In this study, we evaluate the effects of the Fpr1 and Fpr2 agonists Ac9-12 and WKYMV, respectively, in carrageenan-induced acute peritonitis and LPS-stimulated macrophages. Peritonitis was induced in male C57BL/6 mice through the intraperitoneal injection of 1 mL of 3% carrageenan solution or saline (control). Pre-treatments with Ac9-12 and WKYMV reduced leukocyte influx to the peritoneal cavity, particularly neutrophils and monocytes, and the release of IL-1β. The addition of the Fpr2 antagonist WRW4 reversed only the anti-inflammatory actions of WKYMV. In vitro, the administration of Boc2 and WRW4 reversed the effects of Ac9-12 and WKYMV, respectively, in the production of IL-6 by LPS-stimulated macrophages. These biological effects of peptides were differently regulated by ERK and p38 signaling pathways. Lipidomic analysis evidenced that Ac9-12 and WKYMV altered the intracellular lipid profile of LPS-stimulated macrophages, revealing an increased concentration of several glycerophospholipids, suggesting regulation of inflammatory pathways triggered by LPS. Overall, our data indicate the therapeutic potential of Ac9-12 and WKYMV via Fpr1 or Fpr2-activation in the inflammatory response and macrophage activation.


2012 ◽  
Vol 48 (4) ◽  
pp. 589-599 ◽  
Author(s):  
Laila Rigolin Fortunato ◽  
Claudiney de Freitas Alves ◽  
Maxelle Martins Teixeira ◽  
Alexandre Paula Rogerio

Allergic asthma is a complex inflammatory disorder characterized by airway hyperresponsiveness, eosinophilic inflammation and hypersecretion of mucus. Current therapies include β2-agonists, cysteinyl leukotriene receptor 1 antagonists and corticosteroids. Although these drugs demonstrate beneficial effects, their adverse side effects limit their long-term use. Thus, the development of new compounds with similar therapeutic activities and reduced side effects is both desirable and necessary. Natural compounds are used in some current therapies, as plant-derived metabolites can relieve disease symptoms in the same manner as allopathic medicines. Quercetin is a flavonoid that is naturally found in many fruits and vegetables and has been shown to exert multiple biological effects in experimental models, including the reduction of major symptoms of asthma: bronchial hyperactivity, mucus production and airway inflammation. In this review, we discuss results from the literature that illustrate the potential of quercetin to treat asthma and its exacerbations.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Mazher Mohammed ◽  
Mona Elgazzaz ◽  
Clara Berdasco ◽  
Eric D Lazartigues

We previously reported that ADAM17 (aka tumor necrosis factor-α convertase) is critical for the development of hypertension in experimental models and patients. Recent studies highlighted that ADAM17’s formation of TNF-α relies on prior maturation of this sheddase, controlled by the rhomboid-like protein 2 (iRhom2) specifically in microglia. Genetic deletion of iRhom2 in mice shows significant attenuation of TNF-α and ADAM17 activity in a tissue specific manner. Here, we hypothesized that silencing iRhom2 activity specifically in the brain would decrease blood pressure (BP) in the DOCA-salt model of hypertension, in mice. Uninephrectomized mice were implanted subcutaneously (sc) with DOCA-pellets (50 mg) and provided with 1% saline in drinking water. In addition, mice were chronically implanted with an icv cannula connected to a sc osmotic minipump for delivery of: (1) iRhom2-siRNA (9.6 μg/kg/day), (2) scrambled siRNA (SCR 0.2 μg/kg/day), (3) ADAM17 antibody (ADAM17-Ab; 23.8 μg/kg/day) or (4) artificial cerebrospinal fluid (aCSF) for 2 weeks while BP was recorded by telemetry. DOCA-salt treatment led to a significant increase in BP in the control groups (SCR: 156 ±3 mmHg and aCSF: 161 ±1 mmHg; n=3/group; p<0.001) compared to baseline values (122 ±2 mmHg; n=12). ICV infusion of iRhom2-siRNA or ADAM17 neutralizing antibody for 2-weeks in DOCA-salt-treated mice resulted in a significant attenuation of BP (iRhom2-siRNA: 152 ±2 mmHg and ADAM17-Ab: 151 ±2 mmHg n=3/group, p<0.001). These data suggest that: 1) Selective silencing of iRhom2 from microglia is as potent as ADAM17 neutralization throughout the brain in lowering BP and 2) iRhom2 is a potential new therapeutic target for the treatment of salt-sensitive hypertension.


2019 ◽  
Vol 39 (11) ◽  
pp. 694-702 ◽  
Author(s):  
Shohei Shiotsugu ◽  
Toshinori Okinaga ◽  
Manabu Habu ◽  
Daigo Yoshiga ◽  
Izumi Yoshioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document