scholarly journals Quercetin: a flavonoid with the potential to treat asthma

2012 ◽  
Vol 48 (4) ◽  
pp. 589-599 ◽  
Author(s):  
Laila Rigolin Fortunato ◽  
Claudiney de Freitas Alves ◽  
Maxelle Martins Teixeira ◽  
Alexandre Paula Rogerio

Allergic asthma is a complex inflammatory disorder characterized by airway hyperresponsiveness, eosinophilic inflammation and hypersecretion of mucus. Current therapies include β2-agonists, cysteinyl leukotriene receptor 1 antagonists and corticosteroids. Although these drugs demonstrate beneficial effects, their adverse side effects limit their long-term use. Thus, the development of new compounds with similar therapeutic activities and reduced side effects is both desirable and necessary. Natural compounds are used in some current therapies, as plant-derived metabolites can relieve disease symptoms in the same manner as allopathic medicines. Quercetin is a flavonoid that is naturally found in many fruits and vegetables and has been shown to exert multiple biological effects in experimental models, including the reduction of major symptoms of asthma: bronchial hyperactivity, mucus production and airway inflammation. In this review, we discuss results from the literature that illustrate the potential of quercetin to treat asthma and its exacerbations.

2021 ◽  
Vol 3 (2) ◽  
pp. 17-19
Author(s):  
Yuji Ikeno ◽  

After the discovery of thioredoxin as a reductant for many important enzymes in the early 1960s, biological roles of thioredoxin in pathophysiology have been examined using various species and experimental models, e.g., yeast, invertebrates, rodents, and humans. A large number of studies demonstrated that thioredoxin plays an essential role to maintain a reduced cellular environment and possesses many beneficial effects by maintaining cellular/organ functions and against diseases. However, an important question that remains to be answered is whether thioredoxin could attenuate aging by reducing oxidative damage and changing cellular redox state, which alters redox-sensitive signaling pathways. To address this important question, we have been conducting aging studies with transgenic and knockout mice, and transgenic rats to examine whether the upregulation or downregulation of thioredoxin alters lifespan and age-related pathology. Aging studies conducted by our laboratory and others revealed that the roles of thioredoxin on pathophysiology seem to be more complex than our initial expectations as a potential magic bullet to solve the issues with age. Recent studies indicate that thioredoxin could have both beneficial and potentially deleterious effects on aging and age-related diseases. To critically evaluate the biological effects of thioredoxin on aging and age-related diseases, studies require further consideration to assess additional factors, e.g. levels of thioredoxin in different cellular compartments, different effects in each cell/tissue/organ, physiological aging vs. pathology, and/or at different life stages.


2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 850
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


2021 ◽  
Vol 22 (4) ◽  
pp. 1710
Author(s):  
Sylwia Cyboran-Mikołajczyk ◽  
Przemysław Sareło ◽  
Robert Pasławski ◽  
Urszula Pasławska ◽  
Magdalena Przybyło ◽  
...  

Liposomal technologies are used in order to improve the effectiveness of current therapies or to reduce their negative side effects. However, the liposome–erythrocyte interaction during the intravenous administration of liposomal drug formulations may result in changes within the red blood cells (RBCs). In this study, it was shown that phosphatidylcholine-composed liposomal formulations of Photolon, used as a drug model, significantly influences the transmembrane potential, stiffness, as well as the shape of RBCs. These changes caused decreasing the number of stomatocytes and irregular shapes proportion within the cells exposed to liposomes. Thus, the reduction of anisocytosis was observed. Therefore, some nanodrugs in phosphatidylcholine liposomal formulation may have a beneficial effect on the survival time of erythrocytes.


2009 ◽  
Vol 2 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Nurten Ozsoy ◽  
Eda Candoken ◽  
Nuriye Akev

In order to demonstrate whether the known biological effects ofAloe vera(L.) Burm. fil. could correlate with the antioxidant activity of the plant, the antioxidant activity of the aqueous leaf extract was investigated. The present study demonstrated that the aqueous extract fromA. veraleaves contained naturally occuring antioxidant components, including total phenols, flavonoids, ascorbic acid, β-carotene and α-tocopherol. The extract exhibited inhibitory capacity against Fe3+/ascorbic acid induced phosphatidylcholine liposome oxidation, scavenged stable DPPH•, ABTS•+and superoxide anion radicals, and acted as reductant. In contrast, the leaf inner gel did not show any antioxidant activity. It was concluded that the known beneficial effects ofAloe veracould be attributed to its antioxidant activity and could be related to the presence of phenolic compounds and antioxidant vitamins.


Sign in / Sign up

Export Citation Format

Share Document