scholarly journals VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

2017 ◽  
Vol 43 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Jia Guo ◽  
Congqun Lu ◽  
Fangxing Zhang ◽  
Haixia Yu ◽  
Mengwen Zhou ◽  
...  

Background: Diabetic nephropathy (DN) is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR) in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1331
Author(s):  
Yung-Fu Wu ◽  
Chih-Yang Wang ◽  
Wan-Chun Tang ◽  
Yu-Cheng Lee ◽  
Hoang Dang Khoa Ta ◽  
...  

Colorectal cancer (CRC) is a heterogeneous disease with changes in the genetic and epigenetic levels of various genes. The molecular assessment of CRC is gaining increasing attention, and furthermore, there is an increase in biomarker use for disease prognostication. Therefore, the identification of different gene biomarkers through messenger RNA (mRNA) abundance levels may be useful for capturing the complex effects of CRC. In this study, we demonstrate that the high mRNA levels of 10 upregulated genes (DPEP1, KRT80, FABP6, NKD2, FOXQ1, CEMIP, ETV4, TESC, FUT1, and GAS2) are observed in CRC cell lines and public CRC datasets. Moreover, we find that a high mRNA expression of DPEP1, NKD2, CEMIP, ETV4, TESC, or FUT1 is significantly correlated with a worse prognosis in CRC patients. Further investigation reveals that CTNNB1 is the key factor in the interaction of the canonical Wnt signaling pathway with 10 upregulated CRC-associated genes. In particular, we identify NKD2, FOXQ1, and CEMIP as three CTNNB1-regulated genes. Moreover, individual inhibition of the expression of three CTNNB1-regulated genes can cause the growth inhibition of CRC cells. This study reveals efficient biomarkers for the prognosis of CRC and provides a new molecular interaction network for CRC.


Oncogene ◽  
2007 ◽  
Vol 27 (3) ◽  
pp. 274-284 ◽  
Author(s):  
K Haraguchi ◽  
M Ohsugi ◽  
Y Abe ◽  
K Semba ◽  
T Akiyama ◽  
...  

2005 ◽  
Vol 289 (4) ◽  
pp. C853-C859 ◽  
Author(s):  
Dustin D. Armstrong ◽  
Karyn A. Esser

β-Catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most research to date, β-catenin activation has been the unique downstream function of the Wnt signaling pathway. However, in the heart, a Wnt-independent mechanism involving Akt-mediated phosphorylation of glycogen synthase kinase (GSK)-3β was recently shown to activate β-catenin and regulate cardiomyocyte growth. In this study, results have identified the activation of the Wnt/β-catenin pathway during hypertrophy of mechanically overloaded skeletal muscle. Significant increases in β-catenin were determined during skeletal muscle hypertrophy. In addition, the Wnt receptor, mFrizzled (mFzd)-1, the signaling mediator disheveled-1, and the transcriptional co-activator, lymphocyte enhancement factor (Lef)-1, are all increased during hypertrophy of the overloaded mouse plantaris muscle. Experiments also determined an increased association between GSK-3β and the inhibitory frequently rearranged in advanced T cell-1 protein with no increase in GSK-3β phosphorylation (Ser9). Finally, skeletal muscle overload resulted in increased nuclear β-catenin/Lef-1 expression and induction of the transcriptional targets c-Myc, cyclin D1, and paired-like homeodomain transcription factor 2. Thus this study provides the first evidence that the Wnt signaling pathway induces β-catenin/Lef-1 activation of growth-control genes during overload induced skeletal muscle hypertrophy.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Asma Saleem ◽  
Eric W Howard ◽  
Latonya F Been ◽  
Megan Lerner ◽  
Daniel Brackett ◽  
...  

Type 2 (non-insulin-dependent) diabetes mellitus (T2DM) is associated with a marked increase in the risk of coronary heart disease. The discovery of TCF7L2 as a global T2DM gene has triggered investigations to explore the clinical utility of its variants for guiding the development of new diagnostic and therapeutic strategies. However, interpreting the resulting associations into function still remains unclear. Canonical Wnt signaling regulates β-catenin and its binding with TCF7L2, which in turn is critical for the production of glucagon like protein-1 (GLP-1). This study examines the role of a novel frame-shift insertion discovered in a conserved region of WNT16a, and it is proposed that this mutation affects T2DM susceptibility in conjunction with gene variants in TCF7L2. Our results predicted that the insertion would convert the upstream open reading frame in the Wnt16a mRNA to an alternative, in-frame translation initiation site, resulting in the prevention of nonsense-mediated decay that would normally occur in the wild-type message, leading to a consequent stabilization of the mutated WNT16a message. To examine the role of Wnt16a in the Wnt signaling pathway, DNA and serum samples from 2,034 individuals (48% with T2DM) from the Sikh Diabetes Study were used in this investigation, of which 32% were WNT16a insertion carriers. There was a 3.2 fold increase in Wnt16a mRNA levels in pancreatic tissues from the insertion carriers and a significant increase (70%, p<0.0001) in luciferase activity in the constructs carrying the insertion. The expression of TCF7L2 mRNA in pancreas was also elevated (~23-fold) among the insertion carriers (p=0.003). Our results suggest synergistic effects of WNT16a insertion mutants and the at-risk ‘T ‘allele of TCF7L2 (rs7903146) for compounding the risk of T2DM, perhaps by impacting genes related to β-cell function in the Wnt/β-catenin/TCF7L2 signaling pathway.


2004 ◽  
Vol 164 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Lorenza Ciani ◽  
Olga Krylova ◽  
Matthew J. Smalley ◽  
Trevor C. Dale ◽  
Patricia C. Salinas

Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.


2021 ◽  
Vol 23 (4) ◽  
pp. 775-780
Author(s):  
A. S. Kulakova ◽  
I. A. Snimshchikova ◽  
M. O. Plotnikova

The complexity of the adipogenesis mechanism results from the impact of multiple cues, among which an important place is held by the components of the Wnt signaling pathway. The search for potential markers of the development of diseases related to obesity aroused an interest in the study of GSK-3 (glycogen synthase kinase), β-catenin. GSK-3β is an intracellular serine / threonine kinase found in the cytoplasm, nucleus, mitochondria, synthesized in all body tissues and involved in regulating metabolic processes, cell proliferation, apoptosis etc. The first of the discovered functions of GSK-3β was the regulation of glycogen synthesis. Active GSK-3β phosphorylates and thereby inhibits glycogen synthase. As a result of the insulin binding to the cell receptor via inositol-3-phosphate, protein kinase B (Akt1) is activated, which, in turn, phosphorylates and inhibits GSK-3β. In addition, GSK-3β is involved in the regulating glucose metabolism. The most important function of GSK-3β is the inhibition of the β-catenin protein. In a resting cell, GSK-3β in complex with the APC and Axin proteins binds and phosphorylates the β-catenin transcription factor, which leads to its ubiquitination and degradation. When Wnt proteins act on the cell, the Dvl protein is activated, which, by binding to GSK-3β, releases β-catenin, preventing its degradation, however, the role of GSK3α/β in the adipocyte inflammatory response has not yet been fully investigated, therefore it seems promising to study the role of GSK-3 in the Wnt/β-catenin signaling pathway in obesityThe aim of the study was to assess the activity of the components of the Wnt signaling pathway in obese patients by measuring the serum level of GSK-3 and β-catenin. There were enrolled 32 patients with progressive forms of I-III degree obesity in the absence of diabetes mellitus. The concentration of serum GSK-3α, GSK-3β, and β-catenin was measured by enzyme-linked immunoassay. Data are presented as absolute and relative (%) number of patients; arithmetic mean; medians, 1 and 3 quartiles – Ме (Q0.25-Q0.75). Obese patients contained a 7.5-fold increased serum level of GSK-3α (785 (371-1317.5) pg/ml) compared to healthy individuals 105 (102.5-110) pg/ml, (p < 0.001), paralleled with increased amount of GSK-3β, which level in obese patients was 295 (190-695) pg/ml, which is by 18.3% higher than those in healthy individuals 241 (218.75-287.5) pg/ml, p = 0.111. Amount of GSK-3 depending on the degree of obesity tended to increase, most often coupled to decreased β-catenin level which is consistent with the literature data and can be considered as a prognostic criterion for the course of pathological processes in obesity. 


2018 ◽  
Author(s):  
Lijing Zhang ◽  
Xiaobo Sun ◽  
Jianyong Si ◽  
Guangzhi Li ◽  
Li Cao

AbstractThe traditional herb medicine Ferula sinkiangensis K. M. Shen (F. sinkiangensis) has been used to treat stomach disorders in Xinjiang District for centuries. Umbelliprenin is the effective component isolated from F. sinkiangensis which is particularly found in plants of the family Ferula. We previously reported the promising effects of Umbelliprenin against gastric cancer cells, but its anti-migration effect remained unknown. Here we investigated the anti-migration effect and mechanism of Umbelliprenin in human gastric cancer cells. In SRB assay, Umbelliprenin showed cytotoxic activities in the gastric cancer cell lines AGS and BGC-823 in a dose-and-time-dependent manner, while it showed lower cytotoxic activity in the normal gastric epithelium cell line GES-1. During transwell, scratch and colony assays, the migration of tumor cells was inhibited by Umbelliprenin treatment. The expression levels of the Wnt-associated signaling pathway proteins were analyzed with western blots, and the results showed that Umbelliprenin decreased the expression levels of proteins of the Wnt signalling pathway, such as Wnt-2, β-catenin, GSK-3β, p-GSK-3β, Survivin and c-myc. The translocation of β-catenin to the nucleus was also inhibited by Umbelliprenin treatment. In TCF reporter assay, the transcriptional activity of T-cell factor/lymphoid enhancer factor (TCF/LEF) was decreased after Umbelliprenin treatment. Thein vivo results suggested that Umbelliprenin induced little to no harm in the lung, heart and kidney. Overall, these data provided evidence that Umbelliprenin may inhibit the growth, invasion and migration of gastric cancer cells by disturbing the Wnt signaling pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2356-2356 ◽  
Author(s):  
Takashi Oshima ◽  
Masahiro Abe ◽  
Jin Asano ◽  
Tomoko Hara ◽  
Kenichi Kitazoe ◽  
...  

Abstract Multiple myeloma (MM), a malignancy of plasma cells, develops in the bone marrow, and generates devastating bone destruction. Along with enhanced bone resorption, clinical evidence has also suggested suppression of bone formation as a contributing factor to the bone loss in MM. In contrast to recent understanding on mechanisms of osteolysis enahnced in MM, little is known about factors responsible for impaired bone formation. A canonical Wingless-type (Wnt) signaling pathway has recently been shown to play a critical role in osteoblast differentiation. Therefore, in the present study, we aimed to clarify mechanisms of suppression of osteoblast differentiation by MM cells with a particular focus on a canonical Wnt signaling pathway. Because several secreted Frizzled related protein (sFRP) and DKK family members are known as soluble Wnt antagonists, we first examined the expression of sFRP-1, 2 and 3 and DKK-1 in MM cell lines including U266, RPMI8226 and ARH77. All cell lines expressed sFRP-2 and sFRP-3 mRNA observed by RT-PCR. However, sFRP-1 was not expressed in any cell line, and Dkk-1 was expressed only in U266 cells at mRNA levels. We next conducted Western blot analyses for these factors and detected only sFRP-2 in immunoprecipitants of conditioned media as well as cell lysates of all these cell lines. However, no other factors were found at protein levels. Furthermore, sFRP-2 mRNA and protein expression was detected in most MM cells from patients with advanced or terminal stages of MM with bone destruction including plasma cell leukemia (3/4 and 8/10, respectively). In order to examine a biological role for sFRP-2, we added recombinant sFRP-2 to MC3T3-E1 cell culture together with BMP-2. Exogenous sFRP-2 partially suppressed alkaline phosphatase activity but almost completely mineralized nodule formation enhanced by BMP-2. Furthermore, sFRP-2 immunodepletion significantly restored mineralized nodule formation in MC3T3-E1 cells suppressed by RPMI8226 and ARH77 CM. These results suggest that sFRP-2 alone is able to suppress osteoblast differentiation induced by BMP-2 and that MM cell-derived sFRP-2 is among predominant factors responsible for defective bone formation in MM. Because MM cell-derived factors such as DKK-1, IGF-BP4 and IL-3 other than sFRP-2 have been implicated as an inhibitor of osteoblast differentiation, sFRP-2 may act alone or in combination with such other factors to potently suppress bone formation in MM. Taken together, MM cells may cause an imbalance of bone turnover with enhanced osteoclastic bone resorption and concomitantly suppressed bone formation, which leads to devastating destruction and a rapid loss of bone.


2007 ◽  
Vol 28 (2) ◽  
pp. 290-297 ◽  
Author(s):  
Chun-Liang Lin ◽  
Ho Cheng ◽  
Chun-Wu Tung ◽  
Wei-Jan Huang ◽  
Pey-Jium Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document