scholarly journals Intermittent Hypoxia Disrupts Glucose Homeostasis in Liver Cells in an Insulin-Dependent and Independent Manner

2018 ◽  
Vol 47 (3) ◽  
pp. 1042-1050 ◽  
Author(s):  
Chen Juan Gu ◽  
Hua Hua Yi ◽  
Jing Feng ◽  
Zhi Guo Zhang ◽  
Jun Zhou ◽  
...  

Background/Aims: Obstructive sleep apnea is associated with diabetes and insulin resistance, but the underlying mechanisms remain unclear. The purpose of the current study was to determine the molecular effects of intermittent hypoxia (IH) on hepatic insulin signaling and glucose homeostasis, and whether c-Jun NH2-terminal-kinase (JNK) contributed to metabolic responses to IH in liver cells. Methods: The human HepG2 cells and rat FAO cells were exposed to 10, 30, 120, 240 or 360 cycles of IH (1% O2 for 60 s followed by 21% O2 for 60s, 7.5 cycles per hour) or normoxia as a control. In a subgroup, we exposed cells to 360 cycles of IH with the JNK inhibitor SP600125. After IH exposure, cell glycogen content and glucose output were measured using colorimetric assay kits. Canonical insulin signaling and gluconeogenic genes were measured by western blot and quantitative polymerase chain reaction. Results: IH decreased insulin-stimulated protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) phosphorylation in a time-dependent manner, while inhibiting forkhead box protein O1 (FOXO1) expression and phosphoenolpyruvate carboxykinase (PEPCK) transcription independent of insulin signaling. JNK inhibitor SP600125 partially restored AKT/ GSK-3β phosphorylation and glycogen synthesis, but did not affect other IH-induced glucose metabolic changes. Conclusion: IH in vitro impaired insulin signal transduction in liver cells as assessed by inhibited AKT/GSK-3β phosphorylation via JNK activation. IH inhibited FOXO1 and gluconeogenesis in an insulin-independent manner.

2017 ◽  
Vol 50 (4) ◽  
pp. 1700833 ◽  
Author(s):  
Carolina Cubillos-Zapata ◽  
Jose Avendaño-Ortiz ◽  
Enrique Hernandez-Jimenez ◽  
Victor Toledano ◽  
Jose Casas-Martin ◽  
...  

Obstructive sleep apnoea (OSA) is associated with higher cancer incidence, tumour aggressiveness and cancer mortality, as well as greater severity of infections, which have been attributed to an immune deregulation. We studied the expression of programmed cell death (PD)-1 receptor and its ligand (PD-L1) on immune cells from patients with OSA, and its consequences on immune-suppressing activity. We report that PD-L1 was overexpressed on monocytes and PD-1 was overexpressed on CD8+ T-cells in a severity-dependent manner. PD-L1 and PD-1 overexpression were induced in both the human in vitro and murine models of intermittent hypoxia, as well as by hypoxia-inducible factor-1α transfection. PD-L1/PD-1 crosstalk suppressed T-cell proliferation and activation of autologous T-lymphocytes and impaired the cytotoxic activity of CD8+ T-cells. In addition, monocytes from patients with OSA exhibited high levels of retinoic acid related orphan receptor, which might explain the differentiation of myeloid-derived suppressor cells. Intermittent hypoxia upregulated the PD-L1/PD-1 crosstalk in patients with OSA, resulting in a reduction in CD8+ T-cell activation and cytotoxicity, providing biological plausibility to the increased incidence and aggressiveness of cancer and the higher risk of infections described in these patients.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2164-2177 ◽  
Author(s):  
Caroline S. Achard ◽  
D. Ross Laybutt

Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.


2020 ◽  
Author(s):  
Craig A. Eyster ◽  
Satoshi Matsuzaki ◽  
Jennifer R. Giorgione ◽  
Kenneth M. Humphries

AbstractThe cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. Akita ACMs also had decreased PKA signaling in the absence of insulin and this was not rescued by insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were therefore used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


2014 ◽  
Vol 307 (11) ◽  
pp. E1073-E1083 ◽  
Author(s):  
Jonathan C. Jun ◽  
Mi-Kyung Shin ◽  
Ronald Devera ◽  
Qiaoling Yao ◽  
Omar Mesarwi ◽  
...  

Obstructive sleep apnea causes intermittent hypoxia (IH) during sleep and is associated with dysregulation of glucose metabolism. We developed a novel model of clinically realistic IH in mice to test the hypothesis that IH causes hyperglycemia, glucose intolerance, and insulin resistance via activation of the sympathetic nervous system. Mice were exposed to acute hypoxia of graded severity (21, 14, 10, and 7% O2) or to IH of graded frequency [oxygen desaturation index (ODI) of 0, 15, 30, or 60, SpO2nadir 80%] for 30 min to measure levels of glucose fatty acids, glycerol, insulin, and lactate. Glucose tolerance tests and insulin tolerance tests were then performed under each hypoxia condition. Next, we examined these outcomes in mice that were administered phentolamine (α-adrenergic blockade) or propranolol (β-adrenergic blockade) or that underwent adrenal medullectomy before IH exposure. In all experiments, mice were maintained in a thermoneutral environment. Sustained and IH induced hyperglycemia, glucose intolerance, and insulin resistance in a dose-dependent fashion. Only severe hypoxia (7% O2) increased lactate, and only frequent IH (ODI 60) increased plasma fatty acids. Phentolamine or adrenal medullectomy both prevented IH-induced hyperglycemia and glucose intolerance. IH inhibited glucose-stimulated insulin secretion, and phentolamine prevented the inhibition. Propranolol had no effect on glucose metabolism but abolished IH-induced lipolysis. IH-induced insulin resistance was not affected by any intervention. Acutely hypoxia causes hyperglycemia, glucose intolerance, and insulin resistance in a dose-dependent manner. During IH, circulating catecholamines act upon α-adrenoreceptors to cause hyperglycemia and glucose intolerance.


2011 ◽  
Vol 300 (1) ◽  
pp. R166-R174 ◽  
Author(s):  
S. Polakof ◽  
T. W. Moon ◽  
P. Aguirre ◽  
S. Skiba-Cassy ◽  
S. Panserat

Carnivorous fish species such as the rainbow trout ( Oncorhynchus mykiss ) are considered to be “glucose intolerant” because of the prolonged hyperglycemia experienced after intake of a carbohydrate-enriched meal. In the present study, we use this species to study glucose homeostasis in fish chronically infused with the hypoglycemic agents, insulin, and metformin, and fed with a high proportion of carbohydrates (30%). We analyzed liver, skeletal muscle, and white adipose tissue (WAT), which are insulin- and metformin-specific targets at both the biochemical and molecular levels. Trout infused with the combination of insulin and metformin can effectively utilize dietary glucose at the liver, resulting in lowered glycemia, increased insulin sensitivity, and glucose storage capacity, combined with reduced glucose output. However, in both WAT and skeletal muscle, we observed decreased insulin sensitivity with the combined insulin + metformin treatment, resulting in the absence of changes at the metabolic level in the skeletal muscle and an increased potential for glucose uptake and storage in the WAT. Thus, the poor utilization by rainbow trout of a diet with a high proportion of carbohydrate can at least be partially improved by a combined treatment with insulin and metformin, and the glucose intolerance observed in this species could be, in part, due to some of the downstream components of the insulin and metformin signaling pathways. However, the predominant effects of metformin treatment on the action of insulin in these three tissues thought to be involved in glucose homeostasis remain exclusive in this species.


2007 ◽  
Vol 292 (2) ◽  
pp. E469-E475 ◽  
Author(s):  
Yangsong Wu ◽  
Hong Wang ◽  
David L. Brautigan ◽  
Zhenqi Liu

Obstructive sleep apnea is characterized by intermittent obstruction of the upper airway, which leads to intermittent hypoxia. Myocardial glycogen is a major energy resource for heart during hypoxia. Previous studies have demonstrated that intermittent hypoxia rapidly degrades myocardial glycogen and activates glycogen synthase (GS). However, the underlying mechanisms remain undefined. Because sleep apnea/intermittent hypoxia usually happens at night, whether intermittent hypoxia leads to GS activation in the postabsorptive state is not known. In the present study, male adult rats were studied after either an overnight fast or ad libitum feeding with or without intermittent ventilatory arrest (3 90-s periods at 10-min intervals). Hearts were quickly excised and freeze-clamped. Intermittent hypoxia induced a significant decrease in myocardial glycogen content in fed rats and stimulated GS in both fasted and fed rats. However, the portion of GS in the active form increased by ∼38% in fasted rats compared with a larger, ∼130% increase in fed rats. The basal G-6- P content was comparable in fasted and fed animals and increased approximately threefold after hypoxia. The basal phosphorylation states of Akt and GSK-3β and the activity of protein phosphatase 1 (PP1) were comparable between fasted and fed control rats. Hypoxia significantly increased Akt phosphorylation and PP1 activity only in fed rats. In contrast, hypoxia did not induce significant change in GSK-3β phosphorylation in either fasted or fed rats. We conclude that hypoxia activates GS in fed rat myocardium through a combination of rapid glycogenolysis, elevated local G-6- P content, and increased PP1 activity, and fasting attenuates this action independent of local G-6- P content.


2019 ◽  
Vol 20 (2) ◽  
pp. 445 ◽  
Author(s):  
Chloe-Anne Martinez ◽  
Bernadette Kerr ◽  
Charley Jin ◽  
Peter Cistulli ◽  
Kristina Cook

Obstructive sleep apnea (OSA) affects a significant proportion of the population and is linked to increased rates of cancer development and a worse cancer outcome. OSA is characterized by nocturnal intermittent hypoxia and animal models of OSA-like intermittent hypoxia show increased tumor growth and metastasis. Advanced tumors typically have regions of chronic hypoxia, activating the transcription factor, HIF-1, which controls the expression of genes involved in cancer progression. Rapid intermittent hypoxia from OSA has been proposed to increase HIF-1 activity and this may occur in tumors. The effect of exposing a developing tumor to OSA-like intermittent hypoxia is largely unknown. We have built a cell-based model of physiological OSA tissue oxygenation in order to study the effects of intermittent hypoxia in HCT116 colorectal cancer cells. We found that HIF-1α increases following intermittent hypoxia and that the expression of HIF-target genes increases, including those involved in glycolysis, the hypoxic pathway and extracellular matrix remodeling. Expression of these genes acts as a ‘hypoxic’ signature which is associated with a worse prognosis. The total dose of hypoxia determined the magnitude of change in the hypoxic signature rather than the frequency or duration of hypoxia-reoxygenation cycles per se. Finally, transcription of HIF1A mRNA differs in response to chronic and intermittent hypoxia suggesting that HIF-1α may be regulated at the transcriptional level in intermittent hypoxia and not just by the post-translational oxygen-dependent degradation pathway seen in chronic hypoxia.


2008 ◽  
Vol 109 (1) ◽  
pp. 137-148 ◽  
Author(s):  
J A. Jeevendra Martyn ◽  
Masao Kaneki ◽  
Shingo Yasuhara ◽  
David S. Warner ◽  
Mark A. Warner

Obesity is a major cause of type 2 diabetes, clinically evidenced as hyperglycemia. The altered glucose homeostasis is caused by faulty signal transduction via the insulin signaling proteins, which results in decreased glucose uptake by the muscle, altered lipogenesis, and increased glucose output by the liver. The etiology of this derangement in insulin signaling is related to a chronic inflammatory state, leading to the induction of inducible nitric oxide synthase and release of high levels of nitric oxide and reactive nitrogen species, which together cause posttranslational modifications in the signaling proteins. There are substantial differences in the molecular mechanisms of insulin resistance in muscle versus liver. Hormones and cytokines from adipocytes can enhance or inhibit both glycemic sensing and insulin signaling. The role of the central nervous system in glucose homeostasis also has been established. Multipronged therapies aimed at rectifying obesity-induced anomalies in both central nervous system and peripheral tissues may prove to be beneficial.


Author(s):  
Jayasri Nanduri ◽  
Ning Wang ◽  
Benjamin L Wang ◽  
Nanduri R. Prabhakar

Intermittent hypoxia (IH) is a hallmark manifestation of Obstructive Sleep Apnea (OSA). Rodents treated with IH exhibit hypertension. Hypoxia-inducible factor (HIF)-1-dependent transcriptional activation of NADPH oxidases (Nox) and the resulting increase in reactive oxygen species (ROS) levels is a major molecular mechanism underlying IH/OSA-induced hypertension. Jumanji C (JmjC)-containing histone lysine demethylases (JmjC-KDMs) are coactivators of HIF-1-dependent transcriptional activation. In the present study, we tested the hypothesis that JmjC-KDMs are required for IH-evoked HIF-1 transcriptional activation of Nox4 and the ensuing hypertension. Studies were performed on pheochromocytoma (PC)12 cells and rats. IH increased KDM6B protein and enzyme activity in PC12 cells in a HIF-1-independent manner as evidenced by unaltered KDM6B activation by IH in HIF-1α shRNA treated cells. Cells treated with IH showed increased HIF-1-dependent Nox4 transcription as indicated by increased HIF-1α binding to hypoxia responsive element (HRE) sequence of the Nox4 gene promoter demonstrated by chromatin immunoprecipitation (ChiP) assay. Pharmacological blockade of KDM6B with GSKJ4, a specific KDM6 inhibitor, or genetic silencing of KDM6B with shRNA abolished IH-induced Nox4 transcriptional activation by blocking HIF-1α binding to the promoter of the NOX4 gene. Treating IH exposed rats with GSKJ4 showed: a) absence of KDM6B activation and HIF-1-dependent Nox4 transcription in the adrenal medullae, as well as b) absence of elevated plasma catecholamines and hypertension. Collectively, these findings indicate that KDM6B functions as a coactivator of HIF-1-mediated Nox4 transactivation and demonstrate a hitherto uncharacterized role for KDM's in IH-induced hypertension by HIF-1.


Sign in / Sign up

Export Citation Format

Share Document