scholarly journals 5’-AMP-Activated Protein Kinase Regulates Goat Sperm Functions via Energy Metabolism In Vitro

2018 ◽  
Vol 47 (6) ◽  
pp. 2420-2431 ◽  
Author(s):  
Zhendong Zhu ◽  
Rongnan Li ◽  
Gongzhen Ma ◽  
Wenjing Bai ◽  
Xiaoteng Fan ◽  
...  

Background/Aims: ATP is essential for mammalian sperm to survive and maintain fertilizing capacity. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. The aims of the present study were to explore the localization of AMPK in goat sperm and to investigate whether and how AMPK regulates sperm functions in vitro. Methods: Sperm were treated with AMPK modulators (AICAR, metformin and Compound C) during incubation. Sperm motility was assessed with a computer-assisted spermatozoa analysis system (CASA). Membrane integrity, acrosome reaction and mitochondrial membrane potentials were detected by SYBR-14/PI, FITC-PNA and JC-1 staining, respectively. And the lactate content, ATP content, AMPK activity, activity of pyruvate kinase (PK) and lactate dehydrogenase (LDH) were also measured with the commercial assay kits. Immunofluorescence staining was used to analyze the distribution of PK, LDH, AMPK and phospho-Thr172-AMPK in sperm. The role of AMPK was further studied during induction of capacitation and acrosome reaction. Results: We found that AMPKα was localized in the entire acrosomal region, the midpiece and the flagellum, while the phospho-Thr172-AMPK was distributed in the head, the midpiece and flagellum. Activation of AMPK by AICAR and metformin significantly improved sperm motility, membrane integrity and acrosome reaction, largely maintained sperm mitochondrial membrane potentials, lactate content and ATP content, and enhanced the activity of AMPK, PK and LDH, whereas inhibition by Compound C triggered the converse effects. Moreover, PK was localized in the acrosomal area and the midpiece, while LDH was distributed in the tail. Induction of capacitation and acrosome reaction led to AMPK phosphorylation. AMPK phosphorylation regulated the activity of energetic enzymes. Conclusion: This study for the first time provides evidence that AMPK governs goat sperm functions through energy metabolism in vitro. This finding will help to improve assisted reproductive techniques in goats and the other species.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zhendong Zhu ◽  
Rongnan Li ◽  
Xiaoteng Fan ◽  
Yinghua Lv ◽  
Yi Zheng ◽  
...  

Mammalian sperm is highly susceptible to the reactive oxygen species (ROS) stress caused by biochemical and physical modifications during the cryopreservation process. 5′AMP-activated protein kinase (AMPK) is involved in regulating both cell metabolism and cellular redox status. The aim of the present study was to investigate whether the resveratrol protects boar sperm against ROS stress via activation of AMPK during cryopreservation. Boar sperm was diluted with the freezing medium supplemented with resveratrol at different concentrations (0, 25, 50, 75, 100, and 125 μM). It was observed that the addition of 50 μM resveratrol significantly improved the postthaw sperm progressive motility, membrane integrity, acrosome integrity, mitochondrial activity, glutathione (GSH) level, activities of enzymatic antioxidants (glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase), and the phosphorylation of AMPK. Meanwhile, the lipid peroxidation, ROS levels, and apoptosis of postthaw sperm were reduced in the presence of 50 μM resveratrol. Furthermore, when fresh boar sperm was incubated with the medium in the presence of 50 μM resveratrol and 30 μM Compound C (an AMPK inhibitor), the effects of the resveratrol were partly counteracted by the Compound C. These observations suggest that the resveratrol protects boar sperm via promoting AMPK phosphorylation. In conclusion, the addition of resveratrol to the freezing extenders protects boar sperm against ROS damage via promoting AMPK phosphorylation for decreasing the ROS production and improving the antioxidative defense system of postthaw sperm. These findings provide novel insights into understanding the mechanisms of resveratrol on how to protect boar sperm quality contrary to the ROS production during cryopreservation.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4574
Author(s):  
Mei Chou Lai ◽  
Wayne Young Liu ◽  
Shorong-Shii Liou ◽  
I-Min Liu

Moscatilin can protect rat pheochromocytoma cells against methylglyoxal-induced damage. Elimination of the effect of advanced glycation end-products (AGEs) but activation of AMP-activated protein kinase (AMPK) are the potential therapeutic targets for the neurodegenerative diseases. Our study aimed to clarify AMPK signaling’s role in the beneficial effects of moscatilin on the diabetic/hyperglycemia-associated neurodegenerative disorders. AGEs-induced injury in SH-SY5Y cells was used as an in vitro neurodegenerative model. AGEs stimulation resulted in cellular viability loss and reactive oxygen species production, and mitochondrial membrane potential collapse. It was observed that the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase increased in SH-SY5Y cells following AGEs exposure. AGEs decreased Bcl-2 but increased Bax and p53 expression and nuclear factor kappa-B activation in SH-SY5Y cells. AGEs also attenuated the phosphorylation level of AMPK. These AGEs-induced detrimental effects were ameliorated by moscatilin, which was similar to the actions of metformin. Compound C, an inhibitor of AMPK, abolished the beneficial effects of moscatilin on the regulation of SH-SY5Y cells’ function, indicating the involvement of AMPK. In conclusion, moscatilin offers a promising therapeutic strategy to reduce the neurotoxicity or AMPK dysfunction of AGEs. It provides a potential beneficial effect with AGEs-related neurodegenerative diseases.


2008 ◽  
Vol 200 (1) ◽  
pp. 93-105 ◽  
Author(s):  
E Guillod-Maximin ◽  
A F Roy ◽  
C M Vacher ◽  
A Aubourg ◽  
V Bailleux ◽  
...  

Adiponectin is involved in the control of energy homeostasis in peripheral tissues through Adipor1 and Adipor2 receptors. An increasing amount of evidence suggests that this adipocyte-secreted hormone may also act at the hypothalamic level to control energy homeostasis. In the present study, we observed the gene and protein expressions of Adipor1 and Adipor2 in rat hypothalamus using different approaches. By immunohistochemistry, Adipor1 expression was ubiquitous in the rat brain. By contrast, Adipor2 expression was more limited to specific brain areas such as hypothalamus, cortex, and hippocampus. In arcuate and paraventricular hypothalamic nuclei, Adipor1, and Adipor2 were expressed by neurons and astrocytes. Furthermore, using transgenic green fluorescent protein mice, we showed that Adipor1 and Adipor2 were present in pro–opiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus. Finally, adiponectin treatment by intracerebroventricular injection induced AMP-activated protein kinase (AMPK) phosphorylation in the rat hypothalamus. This was confirmed byin vitrostudies using hypothalamic membrane fractions. In conclusion, Adipor1 and Adipor2 are both expressed by neurons (including POMC and NPY neurons) and astrocytes in the rat hypothalamic nuclei. Adiponectin is able to increase AMPK phosphorylation in the rat hypothalamus. These data reinforced a potential role of adiponectin and its hypothalamic receptors in the control of energy homeostasis.


Nanomedicine ◽  
2020 ◽  
Vol 15 (20) ◽  
pp. 1965-1980
Author(s):  
Teresa Vilanova-Perez ◽  
Celine Jones ◽  
Stefan Balint ◽  
Rebecca Dragovic ◽  
Michael L Dustin ◽  
...  

Aim: To investigate exosomes as a noninvasive delivery tool for mammalian sperm. Materials & Methods: Exosomes were isolated from HEK293T cells and co-incubated with boar sperm in vitro. Results: Internalized exosomes were detected within 10 min of co-incubation. Computer-assisted sperm analysis and flow cytometry demonstrated that even after 5-h of exposure to exosomes, there were no significant deleterious effects with regard to sperm motility, viability, membrane integrity and mitochondrial membrane potential (p > 0.05), thus indicating that exosomes did not interfere with basic sperm function. Conclusion: HEK293T-derived exosomes interacted with boar sperm without affecting sperm function. Exosomes represent a versatile and promising research tool for studying sperm biology and provide new options for the diagnosis and treatment of male infertility.


2016 ◽  
Vol 120 (10) ◽  
pp. 1141-1150 ◽  
Author(s):  
Steven G. Denniss ◽  
Rebecca J. Ford ◽  
Christopher S. Smith ◽  
Andrew J. Jeffery ◽  
James W. E. Rush

Exaggerated cyclooxygenase (COX) and thromboxane-prostanoid (TP) receptor-mediated endothelium-dependent contraction can contribute to endothelial dysfunction. This study examined the effect of resveratrol (RSV) on endothelium-dependent contraction and cell signaling in the common carotid artery (CCA) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Acetylcholine (Ach)-stimulated endothelium-dependent nitric oxide synthase (NOS)-mediated relaxation in precontracted SHR CCA was impaired (maximum 73 ± 6% vs. 87 ± 5% in WKY) ( P < 0.05) by competitive COX-mediated contraction. Chronic (28-day) treatment in vivo (drinking water) with a ∼0.075 mg·kg−1·day−1 RSV dose affected neither endothelium-dependent relaxation nor endothelium-dependent contraction and associated prostaglandin (PG) production evaluated in non-precontracted NOS-blocked CCA. In contrast, a chronic ∼7.5 mg·kg−1·day−1 RSV dose improved endothelium-dependent relaxation (94 ± 6%) and attenuated endothelium-dependent contraction (58 ± 4% vs. 73 ± 5% in No-RSV) and PG production (183 ± 43 vs. 519 ± 93 pg/ml) in SHR CCA, while U46619-stimulated TP receptor-mediated contraction was unaffected. In separate acute in vitro experiments, 20-μM RSV preincubation attenuated endothelium-dependent contraction (6 ± 4% vs. 62 ± 2% in No Drug) and PG production (121 ± 15 vs. 491 ± 93 pg/ml) and attenuated U46619-stimulated contraction (134 ± 5% vs. 171 ± 4%) in non-precontracted NOS-blocked SHR CCA. Compound C, a known AMP-activated protein kinase (AMPK) inhibitor, did not prevent the RSV attenuating effect on Ach- and U46619 -stimulated contraction but did prevent the RSV attenuating effect on PG production (414 ± 58 pg/ml). These data demonstrate that RSV can attenuate endothelium-dependent contraction both by suppressing arterial wall PG production, which may be partially mediated by AMPK, and by TP receptor hyporesponsiveness, which does not appear to be mediated by AMPK.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4372-4372
Author(s):  
Feng-Ting Liu ◽  
Li Jia ◽  
Timothy Farren ◽  
Jerome Giustiniani ◽  
Armand Bensussan ◽  
...  

Abstract Abstract 4372 B-cell chronic lymphocytic leukemia (CLL) is an incurable disease, which is at least partly attributable to the majority of cells being in the G0/G1 phase of the cell cycle and expressing high levels of anti-apoptotic Bcl-2 family proteins. Despite their prolonged survival in vivo, CLL cells rapidly undergo spontaneous apoptosis in vitro, suggesting that survival signals in vivo have been lost in in vitro culture conditions. CD160, a glycosylphosphatidylinositol-linked surface antigen, was found to be expressed by CLL cells. In normal NK and T-cells, CD160 mediates cellular growth and activation, but its role in CLL is unclear. Using monoclonal antibodies to CD160 (CL1-R2 or BY55 - non cross blocking) led to increased expression of Bcl-2, Bcl-xL and Mcl-1 anti-apoptotic proteins and protected CLL from spontaneous apoptosis in vitro - mean cell viability increased from 66.8 to 79.4% (n = 17, p = 0.02). These CD160-mediated events were also accompanied by decreased cytochrome C release and prevention of mitochondrial membrane potential collapse, indicating stabilization of both inner and outer mitochondrial membrane integrity. PI3K/AKT signalling is a well known survival pathway in cancer cells and in normal lymphocytes CD160 has been shown to act via PI3K/AKT. Activation of CD160 in CLL led to phosphorylated AKT, while inhibition of PI3K by wortmannin completely blocked AKT phosphorylation and CD160-mediated protection from apoptosis. In summary, the activation of CD160 protected CLL cells from spontaneous cell death in vitro via a PI3-kinase/AKT pathway. This improved survival was also associated with increased Bcl-2, Bcl-xL and Mcl-1 expression and preservation of mitochondrial function. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mojdeh Salehnia ◽  
Virpi Töhönen ◽  
Saeed Zavareh ◽  
Jose Inzunza

The aim of this study was to evaluate mitochondrial alteration and ATP content of germinal vesicle (GV) oocytes isolated from fresh and vitrified ovaries. After superovulation, the ovaries from adult mice were collected and divided into control and vitrified groups. GV oocytes were isolated mechanically from each group. Half were cultured for 24 hours and their maturation was assessed. Metaphase II oocytes were collected and submitted toin vitrofertilization and their fertilization rates and development to the blastocyst stage were evaluated. In the remaining GV oocytes, ATP levels were quantified, and mitochondrial distribution, mitochondrial membrane potential, and intracellular free calcium were detected with rhodamine 123, JC-1 and Flou-4 AM staining, using laser-scanning confocal microscopy. Maturation and fertilization rates of GV oocytes and the developmental rates of subsequent embryos were significantly lower in vitrified samples (P<0.05). The ATP content and Ca2+levels differed significantly in fresh and vitrified GV oocytes (P<0.05). Most mitochondria were seen as large and homogenous aggregates (66.6%) in fresh GV oocytes compared to vitrified oocytes (50%). No significant differences in mitochondrial membrane potential were found between the groups. The lower maturation and fertilization rates of GV oocytes from vitrified ovaries may be due to changes in their mitochondrial function and distribution.


2012 ◽  
Vol 24 (2) ◽  
pp. 323 ◽  
Author(s):  
Vladimir Isachenko ◽  
Evgenia Isachenko ◽  
Anna M. Petrunkina ◽  
Raul Sanchez

Herein, we report the birth of two healthy babies to a woman following intracytoplasmic sperm injection (ICSI) using motile spermatozoa vitrified without permeable cryoprotectants. Spermatozoa (in a case of oligoasthenoteratozoospermia) were cooled in cut standard straws in human tubal fluid supplemented with 0.5% human serum albumin and 0.25 M sucrose. Sperm motility, capacitation-like changes, acrosome reaction and mitochondrial membrane potential (MMP) were compared in fresh and vitrified spermatozoa. Eight mature (MII) oocytes were microinjected with the vitrified–warmed motile spermatozoa. Although the motility of vitrified–warmed spermatozoa was markedly lower than that of fresh spermatozoa (60% v. 90%, respectively), there were no immediate visible differences in the percentages of capacitated and acrosome-reacted vitrified and fresh spermatozoa (10% v. 8% and 5% v. 8%, respectively). However, the MMP in vitrified spermatozoa was apparently adversely affected in the ejaculate used for ICSI compared with fresh spermatozoa (63% v. 96% spermatozoa with high MMP). Eighteen hours later, six oocytes showed signs of normal fertilisation. Two-pronuclear oocytes were cultured in vitro for 24 h and two four-blastomere embryos were transferred. Two healthy girls were born at term. Our findings suggest that permeable cryoprotectant-free vitrification can be applied successfully for some procedures in assisted reproduction, in particular in ICSI with motile vitrified spermatozoa, to achieve normal pregnancy and birth.


2021 ◽  
Vol 59 (4) ◽  
pp. 467
Author(s):  
Thien Truong Do ◽  
Nu Thi Tran ◽  
Que Nguyet Thi Do ◽  
Nhi Thi Y Tran

Abstract-HCTN7. In this paper, antidiabetic activities of glucomanno-oligosaccharides (GMO) in vitro and in vivo were investigated. GMO significantly increased AMP-activated protein kinase (AMPK) phosphorylation in a concentration-independent manner. Treatment with 100μg/ml and 50μg/ml of GMO for 1 hour caused 1.47-fold and 1.81-fold phosphorylation of AMPK, respectively. Oral administration of GMO (6g/kg-1 of body weight day-1) lowered blood glucose levels (p < 0.05) at 120 min as compared to control group. These results suggested that GMO exhibited anti-diabetic effects via activation of AMPK and could be useful for diabetes prevention


Sign in / Sign up

Export Citation Format

Share Document