scholarly journals MicroRNA-29b Regulates the Mitochondria-Dependent Apoptotic Pathway by Targeting Bax in Doxorubicin Cardiotoxicity

2018 ◽  
Vol 48 (2) ◽  
pp. 692-704 ◽  
Author(s):  
Xibo Jing ◽  
Jingxiao Yang ◽  
Lu Jiang ◽  
Jianghong Chen ◽  
Haiyan Wang

Background/Aims: Myocardial apoptosis plays an important role in doxorubicin (Dox) cardiotoxicity. MicroRNA-29 (miR-29) is suggested to function as an anti-fibrotic factor with potential therapeutic effects on cardiac fibrosis. However, it has not been shown whether there is an association between miR-29b and myocardial apoptosis. Methods: Male Wistar rats were transfected with miR-29b agomir by local delivery to the myocardium prior to Dox treatment. Rat cardiomyocytes were pretreated with miR-29b mimics or inhibitor followed by Dox incubation in vitro. Cardiac function and underlying mechanisms were evaluated by echocardiography, immunofluorescence, flow cytometry, real-time PCR, and western blotting. Results: Our results revealed that miR-29b is the only member of the miR-29 family that was significantly downregulated in myocardium from Dox-treated rats. Delivery of miR-29b agomir to myocardium resulted in a marked improvement of cardiac function. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed that rescue of miR-29b expression inhibited Dox-induced myocardial apoptosis, concomitantly with increased Bcl-2 expression and decreased Bax expression and caspase-3 activity. In vitro, miR-29b overexpression mitigated, whereas inhibition of miR-29b promoted, Dox-induced cardiomyocyte apoptosis. Mechanistically, miR-29b negatively regulated Bax expression by directly targeting the 3′ untranslated region of Bax. In Dox-treated cardiomyocytes, upregulation of miR-29b resulted in a significant decrease in Bax expression, with an increase in Bcl-2 expression, accompanied by inhibition of mitochondrial membrane depolarization, cytochrome c release, and caspase activation. However, inhibition of miR-29b produced the opposite effects by further augmenting the effects of Dox. Conclusions: These data demonstrate that miR-29b prevents Dox-induced myocardial apoptosis through inhibition of the mitochondria-dependent pathway by directly targeting Bax, suggesting that miR-29b is a potential novel therapeutic target for the treatment of Dox cardiotoxicity.

2007 ◽  
Vol 30 (4) ◽  
pp. 97 ◽  
Author(s):  
A Wolf ◽  
J Mukherjee ◽  
A Guha

Introduction: GBMs are resistant to apoptosis induced by the hypoxic microenvironment and standard therapies including radiation and chemotherapy. We postulate that the Warburg effect, a preferential glycolytic phenotype of tumor cells even under aerobic conditions, plays a role in these aberrant pro-survival signals. In this study we quantitatively examined the expression profile of hypoxia-related glycolytic genes within pathologically- and MRI-defined “centre” and “periphery” of GBMs. We hypothesize that expression of hypoxia-induced glycolytic genes, particularly hexokinase 2 (HK2), favours cell survival and modulates resistance to tumour cell apoptosis by inhibiting the intrinsic mitochondrial apoptotic pathway. Methods: GBM patients underwent conventional T1-weighted contrast-enhanced MRI and MR spectroscopy studies on a 3.0T GE scanner, prior to stereotactic sampling (formalin and frozen) from regions which were T1-Gad enhancing (“centre”) and T2-positive, T1-Gad negative (“periphery”). Real-time qRT-PCR was performed to quantify regional gene expression of glycolytic genes including HK2. In vitro functional studies were performed in U87 and U373 GBM cell lines grown in normoxic (21% pO2) and hypoxic (< 1%pO2) conditions, transfected with HK2 siRNA followed by measurement of cell proliferation (BrdU), apoptosis (activated caspase 3/7, TUNEL, cytochrome c release) and viability (MTS assay). Results: There exists a differential expression profile of glycolytic enzymes between the hypoxic center and relatively normoxic periphery of GBMs. Under hypoxic conditions, there is increased expression of HK2 at the mitochondrial membrane in GBM cells. In vitro HK2 knockdown led to decreased cell survival and increased apoptosis via the intrinsic mitochondrial pathway, as seen by increased mitochondrial release of cytochrome-C. Conclusions: Increased expression of HK2 in the centre of GBMs promotes cell survival and confers resistance to apoptosis, as confirmed by in vitro studies. In vivo intracranial xenograft studies with injection of HK2-shRNA are currently being performed. HK2 and possibly other glycolytic enzymes may provide a target for enhanced therapeutic responsiveness thereby improving prognosis of patients with GBMs.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Zejuan Sheng ◽  
Xiaoyan Qiang ◽  
Guoyu Li ◽  
Huimin Wang ◽  
Wenxin Dong ◽  
...  

Introduction: Phosphodiesterase 9 (PDE9) controls natriuretic-peptide-stimulated cyclic guanosine monophosphate in cardiac myocytes and is stongly upregulated in human heart failure, suggesting its potential as a promising therapeutic target in heart failure. Here we investigated the potential effects of TT-00920, a clinical stage novel and highly selective PDE9 inhibitor, on heart failure in a rat model of myocardial infarction. Methods: Myocardial infarction was induced by left anterior descending coronary artery (LAD) ligation in male Sprague Dawley rats. After 4-week treatment of vehicle, LCZ696, TT-00920, or TT-00920/Valsartan by oral gavage, efficacy was assessed by echocardiography and cardiac histopathology. Results: TT-00920 had remarkably improved cardiac function, protected against cardiac remodeling and fibrosis in a dose-dependent manner. TT-00920/Valsartan combination showed superior beneficial efficacy when compared to TT-00920 or LCZ696 single agent.Figure 1. TT-00920 improved cardiac function and ventricular remodeling.Figure 2. TT-00920 attenuated cardiac fibrosis in peri-infarct zone. Conclusions: TT-00920 reversed LAD-induced left ventricular dysfunction and remodeling, supporting its potential as a novel therapeutic agent for heart failure. The superior efficacy of TT-00920/Valsartan combination suggests that TT-00920 and renin-angiotensin-aldosterone system inhibitors may have additive therapeutic effects in heart failure.TT-00920 is currently being evaluated in Phase 1 clinical study for safety, tolerability, pharmacokinetics and pharmacodynamics in healthy volunteers (NCT04364789).


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jie Ni ◽  
Yihai Liu ◽  
Lina Kang ◽  
Lian Wang ◽  
Zhonglin Han ◽  
...  

AbstractHuman trophoblast stem cells (TSCs) have been confirmed to play a cardioprotective role in heart failure. However, whether trophoblast stem cell-derived exosomes (TSC-Exos) can protect cardiomyocytes from doxorubicin (Dox)-induced injury remains unclear. In the present study, TSC-Exos were isolated from the supernatants of human trophoblasts using the ultracentrifugation method and characterized by transmission electron microscopy and western blotting. In vitro, primary cardiomyocytes were subjected to Dox and treated with TSC-Exos, miR-200b mimic or miR-200b inhibitor. Cellular apoptosis was observed by flow cytometry and immunoblotting. In vivo, mice were intraperitoneally injected into Dox to establish a heart failure model. Then, different groups of mice were administered either PBS, adeno-associated virus (AAV)-vector, AAV-miR-200b-inhibitor or TSC-Exos via tail vein injection. Then, the cardiac function, cardiac fibrosis and cardiomyocyte apoptosis in each group were evaluated, and the downstream molecular mechanism was explored. TSC-Exos and miR-200b inhibitor both decreased primary cardiomyocyte apoptosis. Similarly, mice receiving TSC-Exos and AAV-miR-200b inhibitor exhibited improved cardiac function, accompanied by reduced apoptosis and inflammation. The bioinformatic prediction and luciferase reporter results confirmed that Zeb1 was a downstream target of miR-200b and had an antiapoptotic effect. TSC-Exos attenuated doxorubicin-induced cardiac injury by playing antiapoptotic and anti-inflammatory roles. The underlying mechanism could be an increase in Zeb1 expression by the inhibition of miR-200b expression. In summary, this study sheds new light on the application of TSC-Exos as a potential therapeutic tool for heart failure.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2808 ◽  
Author(s):  
Ghanem ◽  
Zouein ◽  
Mohamad ◽  
Hodroj ◽  
Haykal ◽  
...  

Acute myeloid leukemia (AML) is a blood cancer characterized by the formation of faulty defective myelogenous cells with morphological heterogeneity and cytogenic aberrations leading to a loss of their function. In an attempt to find an effective and safe AML treatment, vitamin E derivatives, including tocopherols were considered as potential anti-tumor compounds. Recently, other isoforms of vitamin E, namely tocotrienols have been proposed as potential potent anti-cancerous agents, displaying promising therapeutic effects in different cancer types. In this study we evaluated the anti-cancerous effects of γ-tocotrienol, on AML cell lines in vitro. For this purpose, AML cell lines incubated with γ-tocotrienol were examined for their viability, cell cycle status, apoptotic cell death, DNA fragmentation, production of reactive oxygen species and expression of proapoptotic proteins. Our results showed that γ-tocotrienol exhibits time and dose-dependent anti-proliferative, pro-apoptotic and antioxidant effects on U937 and KG-1 cell lines, through the upregulation of proteins involved in the intrinsic apoptotic pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


2017 ◽  
Vol 44 (3) ◽  
pp. 1011-1023 ◽  
Author(s):  
Hui Liu ◽  
Xibo Jing ◽  
Aiqiao Dong ◽  
Baobao Bai ◽  
Haiyan Wang

Background/Aims: Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. Methods: C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. Results: The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Conclusion: Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury.


2017 ◽  
Vol 113 (6) ◽  
pp. 633-643 ◽  
Author(s):  
Jihe Li ◽  
Keyvan Yousefi ◽  
Wen Ding ◽  
Jayanti Singh ◽  
Lina A. Shehadeh

Aims Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. Methods and results In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. Conclusion Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.


2001 ◽  
Vol 281 (4) ◽  
pp. G1115-G1123 ◽  
Author(s):  
Junpei Soeda ◽  
Shinichi Miyagawa ◽  
Kenji Sano ◽  
Junya Masumoto ◽  
Shun'Ichiro Taniguchi ◽  
...  

Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.


2020 ◽  
Vol 21 (4) ◽  
pp. 1486 ◽  
Author(s):  
Narjès Hafsia ◽  
Marine Forien ◽  
Félix Renaudin ◽  
Delphine Delacour ◽  
Pascal Reboul ◽  
...  

Mechanical overload and aging are the main risk factors of osteoarthritis (OA). Galectin 3 (GAL3) is important in the formation of primary cilia, organelles that are able to sense mechanical stress. The objectives were to evaluate the role of GAL3 in chondrocyte primary cilium formation and in OA in mice. Chondrocyte primary cilium was detected in vitro by confocal microscopy. OA was induced by aging and partial meniscectomy of wild-type (WT) and Gal3-null 129SvEV mice (Gal3−/−). Primary chondrocytes were isolated from joints of new-born mice. Chondrocyte apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cytochrome c release. Gene expression was assessed by qRT-PCR. GAL3 was localized at the basal body of the chondrocyte primary cilium. Primary cilia of Gal3−/− chondrocytes were frequently abnormal and misshapen. Deletion of Gal3 triggered premature OA during aging and exacerbated joint instability-induced OA. In both aging and surgery-induced OA cartilage, levels of chondrocyte catabolism and hypertrophy markers and apoptosis were more severe in Gal3−/− than WT samples. In vitro, Gal3 knockout favored chondrocyte apoptosis via the mitochondrial pathway. GAL3 is a key regulator of cartilage homeostasis and chondrocyte primary cilium formation in mice. Gal3 deletion promotes OA development.


2001 ◽  
Vol 280 (5) ◽  
pp. H2292-H2299 ◽  
Author(s):  
Guang-Wu Wang ◽  
Zhanxiang Zhou ◽  
Jon B. Klein ◽  
Y. James Kang

To study possible mechanisms for metallothionein (MT) inhibition of ischemia-reperfusion-induced myocardial injury, cardiomyocytes isolated from MT-overexpressing transgenic neonatal mouse hearts and nontransgenic controls were subjected to 4 h of hypoxia (5% CO2-95% N2, glucose-free modified Tyrode's solution) followed by 1 h of reoxygenation in MEM + 20% fetal bovine serum (FBS) (5% CO2-95% air), and cytochrome c-mediated caspase-3 activation apoptotic pathway was determined. Hypoxia/reoxygenation-induced apoptosis was significantly suppressed in MT-overexpressing cardiomyocytes, as measured by both terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling and annexin V-FITC binding. In association with apoptosis, mitochondrial cytochrome c release, as determined by Western blot, was observed to occur in nontransgenic cardiomyocytes. Correspondingly, caspase-3 was activated as determined by laser confocal microscopic examination with the use of FITC-conjugated antibody against active caspase-3 and by enzymatic assay. The activation of this apoptotic pathway was significantly inhibited in MT-overexpressing cells, as evidenced by both suppression of cytochrome c release and inhibition of caspase-3 activation. The results demonstrate that MT suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis through, at least in part, inhibition of cytochrome c-mediated caspase-3 activation.


Sign in / Sign up

Export Citation Format

Share Document