scholarly journals Pim1 Overexpression Prevents Apoptosis in Cardiomyocytes After Exposure to Hypoxia and Oxidative Stress via Upregulating Cell Autophagy

2018 ◽  
Vol 49 (6) ◽  
pp. 2138-2150 ◽  
Author(s):  
Han-hua Zhu ◽  
Xian-tao Wang ◽  
Yu-han Sun ◽  
Wen-kai He ◽  
Jia-bao Liang ◽  
...  

Background/Aims: Microvascular obstruction (MVO), an undesirable complication of percutaneous coronary intervention, is independently associated with adverse left ventricle remodeling and poor prognosis after acute myocardial infarction. Hypoxia and oxidative stress major roles in the pathophysiology of MVO. Pim1 serves an important protective role in the ischemic myocardium, but the underlying mechanisms remain poorly defined. Autophagy in early hypoxia or during moderate oxidative stress has been demonstrated to protect the myocardium. In this study, we investigated the association between the protective effect of Pim1 and autophagy after hypoxia and oxidative stress. Methods: Ventricular myocytes from neonatal rat heart (NRVMs) were isolated. NRVMs were exposed to hypoxia and H2O2. Rapamycin and 3-methyladenine (3-MA) were used as an activator and inhibitor of autophagy, respectively. pHBAd-Pim1 was transfected into NRVMs. We assessed cardiomyocyte apoptosis by Annexin V-FITC/PI flow cytometry. Autophagy was evaluated by mRFP-GFP-LC3 adenovirus infection by confocal microscopy. Western blotting was used to quantify apoptosis or autophagy protein (caspase-3, LC3, P62, AMPK, mTOR, ATG5) concentrations. Results: Autophagy and apoptosis in NRVMs significantly increased and peaked at 3 h and 6 h, respectively, after exposure to hypoxia and H2O2. The mTOR inhibitor rapamycin induced autophagy and decreased cardiomyocyte apoptosis, but the autophagy inhibitor 3-MA decreased autophagy and increased apoptosis at 3 h after exposure to hypoxia and H2O2. Pim1 levels in NRVMs increased at 3 h and decreased gradually after exposure to hypoxia and H2O2. Pim1 overexpression enhanced autophagy and decreased apoptosis. Pim1-induced promotion of autophagy is partly the result of activation of the AMPK/mTOR/ATG5 pathway after exposure to hypoxia and H2O2. Conclusion: Our results revealed that Pim1 overexpression prevented NRVMs from apoptosis via upregulating autophagy after exposure to hypoxia and oxidative stress, partly through activation of the AMPK/mTOR/ATG5 autophagy pathway.

2014 ◽  
Vol 307 (4) ◽  
pp. E384-E397 ◽  
Author(s):  
Chao Zeng ◽  
Jinyi Wang ◽  
Na Li ◽  
Mingzhi Shen ◽  
Dongjuan Wang ◽  
...  

Activation of conventional PKCs (cPKC) is a key signaling that directs the cardiac toxicity of hyperglycemia. AKAP150, a scaffold protein of the A-kinase anchoring proteins (AKAPs) family, is less defined regarding its capability to anchor and regulate cardiac cPKC signaling. This study was designed to investigate the role of AKAP150 in cPKC-mediated cardiac glucotoxicity. In cardiac tissues from streptozotocin-induced diabetic rats and high-glucose-treated neonatal rat cardiomyocytes, both mRNA and protein levels of AKAP150 increased significantly, and marked elevations were observed in cPKC activity and both expression and phosphorylation levels of p65 NF-κB and p47phox. AKAP150 knockdown was established via intramyocardial injection in vivo and transfection in vitro of adenovirus carrying AKAP150-targeted shRNA. Downregulation of AKAP150 reversed diabetes-induced diastolic dysfunction as manifested by decreased left ventricular end-diastolic diameter and early/late mitral diastolic wave ratio. AKAP150 inhibition also abrogated high-glucose-induced cardiomyocyte apoptosis (TUNEL staining and annexin V/propidium iodide flow cytometry) and oxidative stress (ROS production, NADPH oxidase activity, and lipid peroxidation). More importantly, reduced AKAP150 expression significantly inhibited high-glucose-induced membrane translocation and activation of cPKC and suppressed the increases in the phosphorylation of p65 NF-κB and p47phox. Immunofluorescent coexpression and immunoprecipitation indicated enhanced anchoring of AKAP150 with cPKC within the plasma membrane under hyperglycemia, and AKAP150 preferentially colocalized and functionally bound with PKCα and -β isoforms. These results suggest that cardiac AKAP150 positively responds to hyperglycemia and enhances the efficiency of glucotoxicity signaling through a cPKC/p47phox/ROS pathway that induces myocardial dysfunction, cardiomyocyte apoptosis, and oxidative stress.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zeng Chao ◽  
Jinyi Wang ◽  
Na Li ◽  
Mingzhi Shen ◽  
Haichang Wang ◽  
...  

Background: Chronic activation of conventional PKC (cPKC) is a key signaling that directs the cardiac toxicity of hyperglycemia. AKAP150, a scaffold protein of the A-kinase anchoring proteins (AKAPs) family, is less defined regarding its capability to anchor and regulate cPKC signaling in cardiomyocytes. This study was aimed to investigate the role of AKAP150 in cPKC-mediated cardiac injury in diabetes. Methods and Results: In cardiac tissues from streptozotocin-induced diabetic rats and high-glucose treated neonatal rat cardiomyocytes, expression of AKAP150 increased significantly at both mRNA and protein levels, with a marked elevation in expression and activity of cPKC and phosphorylation levels of p65NF-κB and p47phox. AKAP150 knockdown was established via intramyocardial injection in vivo and transfection in vitro of adenovirus carrying AKAP150 targeted shRNA. Downregulation of AKAP150 reversed diabetes-induced diastolic dysfunction, as evidenced by decreased left ventricular end-diastolic diameter and early/late mitral diastolic wave ratio. AKAP150 inhibition also abrogated high-glucose induced cardiomyocyte apoptosis (TUNEL staining and annexin V/PI flow cytometry) and oxidative stress (ROS production, NADPH oxidase activity and lipid peroxidation). More importantly, reduced AKAP150 expression significantly reversed high-glucose induced membrane translocation and activation of cPKC, and inhibited phosphorylation of p65NF-κB and p47phox. Immunofluorescent co-expression and immunoprecipitation analysis indicated enhanced anchoring of AKAP150 with cPKC within the plasma membrane in both diabetic myocardium and high-glucose treated cardiomyocytes. Further studies using antibodies and specific inhibitors against different cPKC isoforms revealed that AKAP150 preferentially co-localized and functionally bound with PKC α and β, which are the major isoforms responsible for cardiac glucotoxicity. Conclusions: Cardiac AKAP150 positively responds to hyperglycemic stimuli and functions to enhance the efficiency of glucotoxicity signaling through a cPKC/p47phox/ROS pathway that induces myocardial dysfunction, cardiomyocyte apoptosis and oxidative stress.


2021 ◽  
Author(s):  
Fen Zhu ◽  
Zhili Yu ◽  
Dongsheng Li

Abstract Background: Myocardial infarction is a serious representation of cardiovescular disease, however, ischemia–reperfusion (I/R) injury is an unpredictable complication of cardiovascular surgeries.Methods: MiR-187 or DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor or DYRK2 inhibitor to confirm the function of miR-187 in H/R. A myocardium I/R mouse model was established using miR-187 transgenic mice. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. Results: The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress. Conclusions: These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression. Trial registration: Not Applicable.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhinan Wu ◽  
Fei Liao ◽  
Guqing Luo ◽  
Yuxuan Qian ◽  
Xinjie He ◽  
...  

Vulnerable plaque rupture is the main trigger of most acute cardiovascular events. But the underlying mechanisms responsible for the transition from stable to vulnerable plaque remain largely unknown. Nuclear receptor subfamily 1 group D member 1 (NR1D1), also known as REV-ERB α, is a nuclear receptor that has shown the protective role in cardiovascular system. However, the effect of NR1D1 on vulnerable plaque rupture and its underlying mechanisms are still unclear. By generating the rupture-prone vulnerable plaque model in hypercholesterolemic ApoE−/− mice and NR1D1−/−ApoE−/− mice, we demonstrated that NR1D1 deficiency significantly augmented plaque vulnerability/rupture, with higher incidence of intraplaque hemorrhage (78.26% vs. 47.82%, P = 0.0325 ) and spontaneous plaque rupture with intraluminal thrombus formation (65.21% vs. 39.13%, P = 0.1392 ). In vivo experiments indicated that NR1D1 exerted a protective role in the vasculature. Mechanically, NR1D1 deficiency aggravates macrophage infiltration, inflammation, and oxidative stress. Compared with the ApoE−/− mice, NR1D1−/−ApoE−/− mice exhibited a significantly higher expression level of pyroptosis-related genes in macrophages within the plaque. Further investigation based on mice bone marrow-derived macrophages (BMDMs) confirmed that NR1D1 exerted a protective effect by inhibiting macrophage pyroptosis in a NLRP3-inflammasome-dependent manner. Besides, pharmacological activation of NR1D1 by SR9009, a specific NR1D1 agonist, prevented plaque vulnerability/rupture. In general, our findings provide further evidences that NR1D1 plays a protective role in the vasculature, regulates inflammation and oxidative stress, and stabilizes rupture-prone vulnerable plaques.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Hsiao ◽  
I Shimizu ◽  
T Wakasugi ◽  
S Jiao ◽  
T Watanabe ◽  
...  

Abstract Background/Introduction Mitochondria are dynamic regulators of cellular metabolism and homeostasis. The dysfunction of mitochondria has long been considered a major contributor to aging and age-related diseases. The prognosis of severe heart failure is still unacceptably poor and it is urgent to establish new therapies for this critical condition. Some patients with heart failure do not respond to established multidisciplinary treatment and they are classified as “non-responders”. The outcome is especially poor for non-responders, and underlying mechanisms are largely unknown. Purpose Studies indicate mitochondrial dysfunction has causal roles for metabolic remodeling in the failing heart, but underlying mechanisms remain to be explored. This study tried to elucidate the role of Mitofusin-1 in a failing heart. Methods We examined twenty-two heart failure patients who underwent endomyocardial biopsy of intraventricular septum. Patients were classified as non-responders when their left-ventricular (LV) ejection fraction did not show more than 10% improvement at remote phase after biopsy. Fourteen patients were classified as responders, and eight as non-responders. Electron microscopy, quantitative PCR, and immunofluorescence studies were performed to explore the biological processes or molecules involved in failure to respond. In addition to studies with cardiac tissue specific knockout mice, we also conducted functional in-vitro studies with neonatal rat ventricular myocytes. Results Twenty-two patients with IDCM who underwent endomyocardial biopsy were enrolled in this study, including 14 responders and 8 non-responders. Transmission electron microscopy (EM) showed a significant reduction in mitochondrial size in cardiomyocytes of non-responders compared to responders. Quantitative PCR revealed that transcript of mitochondrial fusion protein, Mitofusin-1, was significantly reduced in non-responders. Studies with neonatal rat ventricular myocytes (NRVMs) indicated that the beta-1 adrenergic receptor-mediated signaling pathway negatively regulates Mitofusin-1 expression. Suppression of Mitofusin-1 resulted in a significant reduction in mitochondrial respiration of NRVMs. We generated left ventricular pressure overload model with thoracic aortic constriction (TAC) in cardiac specific Mitofusin-1 knockout model (c-Mfn1 KO). Systolic function was reduced in c-Mfn1 KO mice, and EM study showed an increase in dysfunctional mitochondria in the KO group subjected to TAC. Conclusions Mitofusin-1 becomes a biomarker for non-responders with heart failure. In addition, our results suggest that therapies targeting mitochondrial dynamics and homeostasis would become next generation therapy for severe heart failure patients. Funding Acknowledgement Type of funding source: None


2016 ◽  
Vol 39 (3) ◽  
pp. 1068-1077 ◽  
Author(s):  
Rosi Bissinger ◽  
Daniela S. Kempe-Teufel ◽  
Sabina Honisch ◽  
Syed M. Qadri ◽  
Elko Randrianarisoa ◽  
...  

Background/Aims: Arteritis is an inflammatory disease of the vascular wall leading to ischemia and vascular occlusion. Complications of arteritis include anemia, which could, at least in theory, result from suicidal erythrocyte death or eryptosis, which is characterized by erythrocyte shrinkage and phosphatidylserine (PS) exposure at the erythrocyte surface. Cellular mechanisms involved in the stimulation of eryptosis include increased cytosolic Ca2+-concentration ([Ca2+]i), oxidative stress and ceramide formation. The present study explored whether and how arteritis influences eryptosis. Methods: Blood was drawn from patients suffering from arteritis (n=17) and from healthy volunteers (n=21). PS exposure was estimated from annexin V-binding, erythrocyte volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) from DCFDA fluorescence and ceramide abundance from FITC-conjugated antibody binding in flow cytometry. The patients suffered from anemia despite 2.8±0.4% reticulocytes. Results: The percentage of PS-exposing erythrocytes was significantly higher in patients (1.1±0.1%) than in healthy volunteers (0.3±0.1%). The increase in PS exposure was paralleled by increase in oxidative stress and [Ca2+]i but not by significant changes of ceramide abundance. Erythrocyte PS exposure and ROS production were significantly enhanced in erythrocytes exposed to patient plasma as compared to exposure to plasma from healthy volunteers. Conclusion: Arteritis is associated with enhanced eryptosis due to increased [Ca2+]i and oxidative stress. The eryptosis contributes to or even accounts for the anemia in those patients. As eryptotic erythrocytes adhere to endothelial cells of the vascular wall, they could impede microcirculation and thus contribute to vascular occlusion.


Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


2021 ◽  
pp. 153537022199520
Author(s):  
Nanees F El-Malkey ◽  
Amira E Alsemeh ◽  
Wesam MR Ashour ◽  
Nancy H Hassan ◽  
Husam M Edrees

Intestinal tissue is highly susceptible to ischemia/reperfusion injury in many hazardous health conditions. The anti-inflammatory and antioxidant glycoprotein fetuin-A showed efficacy in cerebral ischemic injury; however, its protective role against intestinal ischemia/reperfusion remains elusive. Therefore, this study investigated the protective role of fetuin-A supplementation against intestinal structural changes and dysfunction in a rat model of intestinal ischemia/reperfusion. We equally divided 72 male rats into control, sham, ischemia/reperfusion, and fetuin-A-pretreated ischemia/reperfusion (100 mg/kg/day fetuin-A intraperitoneally for three days prior to surgery and a third dose 1 h prior to the experiment) groups. After 2 h of reperfusion, the jejunum was dissected and examined for spontaneous contractility. A jejunal homogenate was used to assess inflammatory and oxidative stress enzymes. Staining of histological sections was carried out with hematoxylin, eosin and Masson’s trichrome stain for evaluation. Immunohistochemistry was performed to detect autophagy proteins beclin-1, LC3, and p62. This study found that fetuin-A significantly improved ischemia/reperfusion-induced mucosal injury by reducing the percentage of areas of collagen deposition, increasing the amplitude of spontaneous contraction, decreasing inflammation and oxidative stress, and upregulating p62 expression, which was accompanied by beclin-1 and LC3 downregulation. Our findings suggest that fetuin-A treatment can prevent ischemia/reperfusion-induced jejunal structural and functional changes by increasing antioxidant activity and regulating autophagy disturbances observed in the ischemia/reperfusion rat model. Furthermore, fetuin-A may provide a protective influence against intestinal ischemia/reperfusion complications.


2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


Sign in / Sign up

Export Citation Format

Share Document