scholarly journals Gastric Mammalian Target of Rapamycin Signaling Contributes to Inhibition of Ghrelin Expression Induced by Roux-En-Y Gastric Bypass

2018 ◽  
Vol 51 (2) ◽  
pp. 664-680
Author(s):  
Danjie Li ◽  
Shaojian Li ◽  
Qinling Pan ◽  
Hening Zhai ◽  
Miao Peng ◽  
...  

Background/Aims: Roux-en-Y Gastric Bypass, RYGB, is the most effective strategy to control body weight in morbid obesity. RYGB leads to rapid improvement of glycemic status and weight loss, which are largely attributed to the alteration of gastrointestinal hormones including ghrelin. The current study examined potential mechanisms of altered ghrelin synthesis after RYGB. Methods: Gastric mammalian target of rapamycin (mTOR) signaling, ghrelin synthesis and secretion were determined in lean or obese male mice with or without RYGB operation, as well as in obese patients pre- and post-RYGB surgery. Ghrelin expression and mTOR signaling were investigated by western blotting and immunohistochemistry. Ghrelin mRNA levels were detected by real-time PCR. Plasma ghrelin was measured by enzyme immunoassay. Results: mTOR activity in the gastric fundus was significantly lower than in the forestomachs. Both of them were decreased after 24h fasting. A significant negative correlation was found between gastric levels of phospho-S6 (phospho-S6 ribosomal protein) and proghrelin during changes of energy status. mTOR activity was activated, whereas ghrelin expression was inhibited by Roux-en-Y Gastric Bypass in both rodents and human beings. Increment of ghrelin synthesis and decline of mTOR signaling induced by rapamycin were significantly reversed by RYGB in both lean and obese mice. Administration of Ad-S6K1 (adenovirus-mediated p70 ribosomal protein subunit 6 kinase 1) from tail vein suppressed the expression of ghrelin in RYGB-operated mice relative to control animals. Conclusion: mTOR is therefore a gastric fuel sensor whose activity is linked to the regulation of ghrelin after Roux-en-Y Gastric Bypass.

Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3637-3644 ◽  
Author(s):  
Geyang Xu ◽  
Yin Li ◽  
Wenjiao An ◽  
Shenduo Li ◽  
Youfei Guan ◽  
...  

Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate food intake. Mammalian target of rapamycin (mTOR) is an intracellular fuel sensor critical for cellular energy homeostasis. Here we showed the reciprocal relationship of gastric mTOR signaling and ghrelin during changes in energy status. mTOR activity was down-regulated, whereas gastric preproghrelin and circulating ghrelin were increased by fasting. In db/db mice, gastric mTOR signaling was enhanced, whereas gastric preproghrelin and circulating ghrelin were decreased. Inhibition of the gastric mTOR signaling by rapamycin stimulated the expression of gastric preproghrelin and ghrelin mRNA and increased plasma ghrelin in both wild-type and db/db mice. Activation of the gastric mTOR signaling by l-leucine decreased the expression of gastric preproghrelin and the level of plasma ghrelin. Overexpression of mTOR attenuated ghrelin promoter activity, whereas inhibition of mTOR activity by overexpression of TSC1 or TSC2 increased its activity. Ghrelin receptor antagonist d-Lys-3-GH-releasing peptide-6 abolished the rapamycin-induced increment in food intake despite that plasma ghrelin remained elevated. mTOR is therefore a gastric fuel sensor whose activity is linked to the regulation of energy intake through ghrelin.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5016-5026 ◽  
Author(s):  
J. Roa ◽  
D. Garcia-Galiano ◽  
L. Varela ◽  
M. A. Sánchez-Garrido ◽  
R. Pineda ◽  
...  

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that operates as sensor of cellular energy status and effector for its coupling to cell growth and proliferation. At the hypothalamic arcuate nucleus, mTOR signaling has been recently proposed as transducer for leptin effects on energy homeostasis and food intake. However, whether central mTOR also participates in metabolic regulation of fertility remains unexplored. We provide herein evidence for the involvement of mTOR in the control of puberty onset and LH secretion, likely via modulation of hypothalamic expression of Kiss1. Acute activation of mTOR by l-leucine stimulated LH secretion in pubertal female rats, whereas chronic l-leucine infusion partially rescued the state of hypogonadotropism induced by food restriction. Conversely, blockade of central mTOR signaling by rapamycin caused inhibition of the gonadotropic axis at puberty, with significantly delayed vaginal opening, decreased LH and estradiol levels, and ovarian and uterine atrophy. Inactivation of mTOR also blunted the positive effects of leptin on puberty onset in food-restricted females. Yet the GnRH/LH system retained their ability to respond to ovariectomy and kisspeptin-10 after sustained blockade of mTOR, ruling out the possibility of unspecific disruption of GnRH function by rapamycin. Finally, mTOR inactivation evoked a significant decrease of Kiss1 expression at the hypothalamus, with dramatic suppression of Kiss1 mRNA levels at the arcuate nucleus. Altogether our results unveil the role of central mTOR signaling in the control of puberty onset and gonadotropin secretion, a phenomenon that involves the regulation of Kiss1 and may contribute to the functional coupling between energy balance and gonadal activation and function.


2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2021 ◽  
Vol 22 (2) ◽  
pp. 817
Author(s):  
Junfang Yan ◽  
Yi Xie ◽  
Jing Si ◽  
Lu Gan ◽  
Hongyan Li ◽  
...  

Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.


2012 ◽  
Vol 302 (12) ◽  
pp. E1453-E1460 ◽  
Author(s):  
Claudia Wiza ◽  
Emmani B. M. Nascimento ◽  
D. Margriet Ouwens

The proline-rich Akt substrate of 40 kDa (PRAS40) acts at the intersection of the Akt- and mammalian target of rapamycin (mTOR)-mediated signaling pathways. The protein kinase mTOR is the catalytic subunit of two distinct signaling complexes, mTOR complex 1 (mTORC1) and mTORC2, that link energy and nutrients to the regulation of cellular growth and energy metabolism. Activation of mTOR in response to nutrients and growth factors results in the phosphorylation of numerous substrates, including the phosphorylations of S6 kinase by mTORC1 and Akt by mTORC2. Alterations in Akt and mTOR activity have been linked to the progression of multiple diseases such as cancer and type 2 diabetes. Although PRAS40 was first reported as substrate for Akt, investigations toward mTOR-binding partners subsequently identified PRAS40 as both component and substrate of mTORC1. Phosphorylation of PRAS40 by Akt and by mTORC1 itself results in dissociation of PRAS40 from mTORC1 and may relieve an inhibitory constraint on mTORC1 activity. Adding to the complexity is that gene silencing studies indicate that PRAS40 is also necessary for the activity of the mTORC1 complex. This review summarizes the regulation and potential function(s) of PRAS40 in the complex Akt- and mTOR-signaling network in health and disease.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2383-2391 ◽  
Author(s):  
Catherine Mounier ◽  
Victor Dumas ◽  
Barry I. Posner

The expression of IGF-binding protein-1 (IGFBP-1) is induced in rat liver by dexamethasone and glucagon and is completely inhibited by 100 nm insulin. Various studies have implicated phosphatidylinositol 3-kinase, protein kinase B (Akt), phosphorylation of the transcription factors forkhead in rhabdomyosarcoma 1 (Foxo1)/Foxo3, and the mammalian target of rapamycin (mTOR) in insulin’s effect. In this study we examined insulin regulation of IGFBP-1 in both subconfluent and confluent hepatocytes. In subconfluent hepatocytes, insulin inhibition of IGFBP-1 mRNA levels was blocked by inhibiting PI3 kinase activation, and there was a corresponding inhibition of Foxo1/Foxo3 phosphorylation. In these same cells, inhibition of the insulin effect by rapamycin occurred in the presence of insulin-induced Foxo1/Foxo3 phosphorylation. In confluent hepatocytes, insulin could not activate the phosphatidylinositol 3-kinase (PI3 kinase)-Akt-Foxo1/Foxo3 pathway, but still inhibited IGFBP-1 gene expression in an mTOR-dependent manner. In subconfluent hepatocytes, the serine/threonine phosphatase inhibitor okadaic acid (100 nm) partially inhibited IGFBP-1 gene expression by 40%, but did not produce phosphorylation of either Akt or Foxo proteins. In contrast, 1 nm insulin inhibited the IGFBP-1 mRNA level by 40% and correspondingly activated Akt and Foxo1/Foxo3 phosphorylation to a level comparable to that observed with 100 nm insulin. These results suggest a potential role for a serine/threonine phosphatase(s) in the regulation of IGFBP-1 gene transcription, which is not downstream of mTOR and is independent of Akt. In conclusion, we have found that in rat liver, insulin inhibition of IGFBP-1 mRNA levels can occur in the absence of the phosphorylation of Foxo1/Foxo3, whereas activation of the mTOR pathway is both necessary and sufficient.


2002 ◽  
Vol 22 (21) ◽  
pp. 7428-7438 ◽  
Author(s):  
Lloyd P. McMahon ◽  
Kin M. Choi ◽  
Tai-An Lin ◽  
Robert T. Abraham ◽  
John C. Lawrence

ABSTRACT The mammalian target of rapamycin (mTOR) is a Ser/Thr (S/T) protein kinase, which controls mRNA translation initiation by modulating phosphorylation of the translational regulators PHAS-I and p70S6K. Here we show that in vitro mTOR is able to phosphorylate these two regulators at comparable rates. Both (S/T)P sites, such as Thr36, Thr45, and Thr69 in PHAS-I and the h(S/T)h site (where h is a hydrophobic amino acid) Thr389 in p70S6K, were phosphorylated. Rapamycin-FKBP12 inhibited mTOR activity. Surprisingly, the extent of inhibition depended on the substrate. Moreover, mutating Ser2035 in the rapamycin-binding domain (FRB) not only decreased rapamycin sensitivity as expected but also dramatically affected the sites phosphorylated by mTOR. The results demonstrate that mutations in Ser2035 are not silent with respect to mTOR activity and implicate the FRB in substrate recognition. The findings also impose new limitations on interpreting results from experiments in which rapamycin and/or rapamycin-resistant forms of mTOR are used to investigate mTOR function in cells.


Sign in / Sign up

Export Citation Format

Share Document