scholarly journals Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Modulation of Apoptosis and Autophagy

2018 ◽  
Vol 51 (2) ◽  
pp. 897-908 ◽  
Author(s):  
Xiao-Lin Zhang ◽  
Zhao-Ni Chen ◽  
Quan-Fang Huang ◽  
Fa-Cheng Bai ◽  
Jin-Lan Nie ◽  
...  

Background/Aims: Activated hepatic stellate cells (HSCs) are the major source of extracellular matrix (ECM). Therefore inhibiting HSC activation is considered as an effective strategy to inhibit the process of liver fibrosis. This study aimed to investigate the underlying mechanism of methyl helicterate (MH) isolated from Helicteres angustifolia on the activation of HSCs. Methods: HSC-T6 cells were treated with various concentration of MH and autophagy was inhibited by 3-Methyl adenine (3-MA) or RNA interference. Cell viability was observed by MTT assay and cell colony assay. Cell cycle and apoptosis were analyzed using flow cytometry. Autophagic vacuoles were observed by transmission electron microscopy and monodansyl cadaverine (MDC) staining. Moreover, autophagy-related genes and proteins were detected using real-time PCR and Western blot assays, respectively. Results: MH significantly inhibited HSC activation, as evidenced by the inhibition of cell viability, colony formation and the expression of α-SMA and collagen I. MH caused cell cycle arrest in G2/M phase. Moreover, MH significantly induced apoptosis through regulating the mitochondria-dependent pathway and the activity of caspases. MH treatment significantly increased lysosomes and autophagosomes, and enhanced the formation of autophagic vacuoles and autophagic flux. Interestingly, inhibiting autophagy by 3-MA or RNA interference abolished the ability of MH in inhibiting HSC activation. On the other hand, induction of autophagy promoted MH-induced HSC apoptosis. Further study showed that MH-induced HSC apoptosis and autophagy was mediated by the JNK and PI3K/Akt/mTOR pathways. Conclusion: Our results demonstrate that MH-induced HSC apoptosis and autophagy may be one of the important mechanisms for its anti-fibrosis effect.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5415-5415 ◽  
Author(s):  
Weili Wang ◽  
Zhaoyuan Zhang ◽  
Xingyi Kuang ◽  
Jishi Wang

Aims: Human histone lysine-specific demethylase 1(LSD1) inhibit gene transcription and thereby block myeloid differentiation, apoptosis and cell cycle in AML. 4SC-202, a novel inhibitor of LSD1, is potential therapeutic agent for treating Myelodysplastic syndrome, while its mechanism of action remains unclear. M ainly method : In the study, LSD1 and HO-1 gene expression were detected in MDS/AML patients. After MDS cell line SKM-1 was treated with 4SC-202, cell viability, apoptosis and cell cycle were detected by CCK-8 or FACS. Lastly, western blotting analyzed that the agent caused the change of the related cellular function protein in SKM-1 cells. K ey findings: We found that LSD1 and HO-1 were overexpression in MDS/AML patients. LSD1 inhibitor 4SC-202 inhibited cell viability. The agent induced apoptosis by up-regulated BAX and cleaved caspase3/9 as well as down-regulated BCL-2, arrested cell cycle in the G2/M phase by down-regulated CDK1 and up-regulated p21, as well as inhibited activation of the NF-κB pathway and decreased HO-1. LSD1 and HO-1 expression were decreased after exposure with the NF-κB inhibitor OBY11-7082. Silencing LSD1 by LSD1 siRNA hardly caused apoptosis in SKM-1 cells, while the combination of Bay11-7082 and silencing LSD1 significantly decreased LSD1 and HO-1 expression and further increased apoptosis. While up-regulated HO-1 significantly limited the 4SC-202-induced down-regulation of BCL-2, up-regulation of cleaved caspase 3/9 and suppressed activation of NF-κB pathway as well as thereby attenuated the agent efficacy. S ignificant : In conclusion, LSD1 inhibitor 4SC-202 induced apoptosis through the NF-κB-mediated HO-1 pathway. LSD1 might be a potential target for the treatment of MDS. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 34 (05) ◽  
pp. 887-899 ◽  
Author(s):  
Wan-Ying Wu ◽  
Hong-Zhu Guo ◽  
Gui-Qin Qu ◽  
Jian Han ◽  
De-An Guo

Previous studies have shown that pseudolaric acid B (PB) would cause apoptosis in human tumor cell lines. However, the mechanisms of PB induced apoptosis are still unclear. In the present study, the mechanisms of PB induced apoptosis in the human hepatocellular carcinoma Bel-7402 cell line were investigated by measuring cell viability, rate of apoptosis, cell cycle, detecting DNA fragmentation, and measuring caspase-3 activation. The results indicated that PB inhibited Bel-7402 cell viability and induced cell death by causing DNA fragmentation, up regulating the early and late apoptotic rates, activating caspase-3 protein, and detaining the cell cycle in the G2/M phases. Additionally, PB-induced apoptosis was a dose- and time-dependent manner. These observations suggest that PB-induced apoptosis occurs through a caspase-dependent pathway and detains the cell cycle in the G2/M phase.


2019 ◽  
Vol 19 (4) ◽  
pp. 439-452 ◽  
Author(s):  
Mohamed R. Selim ◽  
Medhat A. Zahran ◽  
Amany Belal ◽  
Moustafa S. Abusaif ◽  
Said A. Shedid ◽  
...  

Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 490 ◽  
Author(s):  
Rocío Jiménez-Guerrero ◽  
Jessica Gasca ◽  
M. Flores ◽  
Begoña Pérez-Valderrama ◽  
Cristina Tejera-Parrado ◽  
...  

Paclitaxel is a treatment option for advanced or metastatic bladder cancer after the failure of first-line cisplatin and gemcitabine, although resistance limits its clinical benefits. Mcl-1 is an anti-apoptotic protein that promotes resistance to paclitaxel in different tumors. Obatoclax, a BH3 mimetic of the Bcl-2 family of proteins, antagonizes Mcl-1 and hence may reverse paclitaxel resistance in Mcl-1-overexpressing tumors. In this study, paclitaxel-sensitive 5637 and -resistant HT1197 bladder cancer cells were treated with paclitaxel, obatoclax, or combinations of both. Apoptosis, cell cycle, and autophagy were measured by Western blot, flow cytometry, and fluorescence microscopy. Moreover, Mcl-1 expression was analyzed by immunohistochemistry in bladder carcinoma tissues. Our results confirmed that paclitaxel alone induced Mcl-1 downregulation and apoptosis in 5637, but not in HT1197 cells; however, combinations of obatoclax and paclitaxel sensitized HT1197 cells to the treatment. In obatoclax-treated 5637 and obatoclax + paclitaxel-treated HT1197 cells, the blockade of the autophagic flux correlated with apoptosis and was associated with caspase-dependent cleavage of beclin-1. Obatoclax alone delayed the cell cycle in 5637, but not in HT1197 cells, whereas combinations of both retarded the cell cycle and reduced mitotic slippage. In conclusion, obatoclax sensitizes HT1197 cells to paclitaxel-induced apoptosis through the blockade of the autophagic flux and effects on the cell cycle. Furthermore, Mcl-1 is overexpressed in many invasive bladder carcinomas, and it is related to tumor progression, so Mcl-1 expression may be of predictive value in bladder cancer.


2019 ◽  
Vol 20 (9) ◽  
pp. 2184 ◽  
Author(s):  
Ahmed Dhahir Latif ◽  
Tímea Gonda ◽  
Máté Vágvölgyi ◽  
Norbert Kúsz ◽  
Ágnes Kulmány ◽  
...  

Naringenin is one of the most abundant dietary flavonoids exerting several beneficial biological activities. Synthetic modification of naringenin is of continuous interest. During this study our aim was to synthesize a compound library of oxime and oxime ether derivatives of naringenin, and to investigate their biological activities. Two oximes and five oxime ether derivatives were prepared; their structure has been elucidated by NMR and high-resolution mass spectroscopy. The antiproliferative activity of the prepared compounds was evaluated by MTT assay against human leukemia (HL-60) and gynecological cancer cell lines isolated from cervical (HeLa, Siha) and breast (MCF-7, MDA-MB-231) cancers. Tert-butyl oxime ether derivative exerted the most potent cell growth inhibitory activity. Moreover, cell cycle analysis suggested that this derivative caused a significant increase in the hypodiploid (subG1) phase and induced apoptosis in Hela and Siha cells, and induced cell cycle arrest at G2/M phase in MCF-7 cells. The proapoptotic potential of the selected compound was confirmed by the activation of caspase-3. Antioxidant activities of the prepared molecules were also evaluated with xanthine oxidase, DPPH and ORAC assays, and the methyl substituted oxime ether exerted the most promising activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shenzong Rao ◽  
Jie Xiang ◽  
Jingsong Huang ◽  
Shangang Zhang ◽  
Min Zhang ◽  
...  

Abstract Background PRC1 (Protein regulator of cytokinesis 1) regulates microtubules organization and functions as a novel regulator in Wnt/β-catenin signaling pathway. Wnt/β-catenin is involved in development of liver fibrosis (LF). We aim to investigate effect and mechanism of PRC1 on liver fibrosis. Methods Carbon tetrachloride (CCl4)-induced mice LF model was established and in vitro cell model for LF was induced by mice primary hepatic stellate cell (HSC) under glucose treatment. The expression of PRC1 in mice and cell LF models was examined by qRT-PCR (quantitative real-time polymerase chain reaction), western blot and immunohistochemistry. MTT assay was used to detect cell viability, and western blot to determine the underlying mechanism. The effect of PRC1 on liver pathology was examined via measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hydroxyproline, as well as histopathological analysis. Results PRC1 was up-regulated in CCl4-induced mice LF model and activated HSC. Knockdown of PRC1 inhibited cell viability and promoted cell apoptosis of activated HSC. PRC1 expression was regulated by Wnt3a signaling, and PRC1 could regulate downstream β-catenin activation. Moreover, PRC1 could activate glioma-associated oncogene homolog 1 (GLI1)-dependent osteopontin expression to participate in LF. Adenovirus-mediated knockdown of PRC1 in liver attenuated LF and reduced collagen deposition. Conclusions PRC1 aggravated LF through regulating Wnt/β-catenin mediated GLI1-dependent osteopontin expression, providing a new potential therapeutic target for LF treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yanling Liu ◽  
Zijun Zhou ◽  
Jingzhe Yan ◽  
Xuefeng Wu ◽  
Guiying Xu

Background. Breast cancer is the common malignancy with high morbidity and mortality in women. S-phase kinase-associated protein 2 (Skp2) has been characterized to play an oncogenic role in the breast carcinogenesis and progression. Therefore, inactivation of Skp2 in breast cancer might be a novel approach for fighting breast malignancy. A natural compound diosgenin has been reported to exert anticancer activity in a variety of human cancers. However, the underlying mechanism has not been fully determined. Methods. In this study, we aim to explore whether diosgenin performed antitumor activity via inhibition of Skp2 in breast cancer cells using several methods including MTT, Transwell invasion assay, RT-PCR, western blotting, and transfection. Results. We found that diosgenin inhibited cell viability and stimulated apoptosis. Moreover, we found that diosgenin reduced cell invasion in breast cancer cells. Furthermore, diosgenin inhibited the expression of Skp2 in breast cancer cells. Notably, diosgenin reduced cell viability and motility and induced apoptosis via suppression of Skp2 in breast cancer cells. Conclusion. Our findings revealed that diosgenin could be a potential inhibitor of Skp2 for treating breast cancer.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327481989797
Author(s):  
Kun-Ming Wu ◽  
Chih-Wen Chi ◽  
Jerry Cheng-Yen Lai ◽  
Yu-Jen Chen ◽  
Yu Ru Kou

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 μM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase–related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1908-1908
Author(s):  
Fabricio de Carvalho ◽  
Erico T. Costa ◽  
Anamaria A. Camargo ◽  
Juliana C. Gregorio ◽  
Cibele Masotti ◽  
...  

Abstract Abstract 1908 Introduction: MAGE-C1/CT7 encodes for a cancer/testis antigen (CTA) frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. The expression of this CTA is restricted to malignant plasma cells and a positive correlation between MAGEC1/CT7 expression and advanced stage has been demonstrated for MM. It has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function of this protein in the pathophysiology of MM is not yet understood. Objectives: (1) To clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle regulation in myeloma cell line SKO-007 and (2) to evaluate the impact of silencing MAGE-C1/CT7 on cells treated with bortezomib. Material and Methods: Short hairpin RNA (shRNA) specific for MAGE-C1/CT7 was inserted in the pRETROSUPER(pRS) retroviral vector. The pRS-shRNA-MAGE-C1/CT7 was co-transfected with pCL-amphotropic packing vector in 293T cells to produce virus particles. Sko-007 myeloma cell line was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time PCR (RQ-PCR) and western blot. Functional studies included cell proliferation, cell cycle analysis using propidium iodide, and analysis of apoptosis using annexin V staining. Results: SKO-007 MM cell line was transduced for stable expression of shRNA-MAGE-C1/CT7. SKO-007 cells were divided into three derivatives: empty vector (pRS) and ineffective shRNA (antisense strand deleted – GC bases) [both used as controls for all the experiments] and inhibited (shMAGE-C1/CT7). MAGE-C1/CT7 mRNA expression was ∼5 times lower in inhibited cell line than control cells by RQ-PCR. Western blot showed 70–80% decrease in MAGE-C1/CT7 protein expression in inhibited cells when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. We used empty vector, ineffective shRNA and inhibited cells to determine whether inhibition of MAGE-C1/CT7 was associated with cell cycle dysregulation. We detected differences between inhibited cells and both controls regarding the proportion of myeloma cells in the G2/M phase (p<0.05). When inhibited cells and controls were treated with 10 nM bortezomib for 48h, inhibited cells showed a 48% reduction of cells in the G2/M phase but control cells have 11% (empty vector) and 10% (ineffective shRNA) of reduction (p<0.05). Inhibited cells treated with 15 nM bortezomib showed an increased percentage of apoptotic cells in comparison with bortezomib treated controls (p<0.01) [Figure]. Conclusions: MAGE-C1/CT7 antigen inhibition did not change cell proliferation and DNA synthesis in SKO-007 cells. However, we found that MAGE-C1/CT7 plays in cell cycle regulation, protecting SKO-007 cells against bortezomib-induced apoptosis. Therefore, MAGE-C1/CT7 silencing by shRNA could be a strategy for future therapies in MM, i.e. in combination with proteasome inhibitors. [Supported by CNPq and LICR] Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (3) ◽  
pp. 453-461
Author(s):  
Riris Istighfari Jenie ◽  
Nur Dina Amalina ◽  
Gagas Pradani Nur Ilmawati ◽  
Rohmad Yudi Utomo ◽  
Muthi Ikawati ◽  
...  

Purpose: Genistein, a soy isoflavone, exhibits a biphasic effect on cells proliferation with some different effects between ER-alpha and ER-beta. The objective of this present study is to determine the modulatory effect based on cell cycle progression under genistein treatment in combination with 17-β estradiol (E2) on CHO-K1 cells. Methods: The effect of genistein 0.1-100 µM on cells proliferation was examined by MTT assay. The modulation of genistein and estradiol (E2) on cell cycle and apoptosis were observed by using flowcytometry with PI and PI/AnnexinV staining, respectively. Moreover, the effect of genistein and E2 on senescence cells, and ROS level were determined by senescence-associated β-galactosidase (SA β-gal) staining and by using flowcytometry with 2’, 7’–dichlorofluorescin diacetate (DCFDA) staining, respectively. The expression level of the cell cycle and senescence protein markers were observed by immunoblotting. Results: Single treatment of genistein at physiologically achievable (low) concentration (<2 µM) induced proliferation of CHO-K1 cells while at a pharmacological (high) concentration (50 and 100 µM) suppressed cells proliferation. Interestingly, treatment of genistein at the physiological concentration in combination with E2 for 24, 48 and 72 h decreased cells viability on CHO-K1 cells compared to untreated cells. Further analysis of the cells showed that 50 µM genistein induced G2/M phase accumulation and induced apoptosis. Moreover, genistein induced cell senescence and increased ROS level. Immunoblotting analysis showed the decreasing of ERalpha, Bcl2, and ppRb protein level upon treatment of 1 µM Gen and 1 nM E2. Conclusion: Our results suggest that the cell proliferation inhibitory mechanism of genistein at pharmacological concentration involved the induction of cell senescence, and the elevation of ROS level. Moreover, the decreased of cells proliferation upon treatment of physiological concentration of genistein in combination with E2 may be correlated with the alteration of ER expression.


Sign in / Sign up

Export Citation Format

Share Document