The Role of MRI Biomarkers and Their Interactions with Cognitive Status and APOE ε4 in Nondemented Elderly Subjects

2018 ◽  
Vol 18 (5-6) ◽  
pp. 270-280 ◽  
Author(s):  
Xue Liang ◽  
Zhenyu Yin ◽  
Renyuan Liu ◽  
Hui Zhao ◽  
Sichu Wu ◽  
...  

Purpose: (1) To investigate atrophy patterns of hippocampal subfield volume and Alzheimer’s disease (AD)-signature cortical thickness in mild cognitive impairment (MCI) patients; (2) to explore the association between the neuropsychological (NP) and the brain structure in the MCI and older normal cognition group; (3) to determine whether these associations were modified by the apolipoprotein E (APOE) ε4 gene and cognitive status. Methods: The FreeSurfer software was used for automated segmentation of hippocampal subfields and AD-signature cortical thickness for 22 MCI patients and 23 cognitive normal controls (NC). The volume, cortical thickness, and the neuropsychological scale were compared with two-sample t tests. Linear regression models were used to determine the association between the NP and the brain structure. Results: Compared with the NC group, MCI patients showed a decreased volume of the left presubiculum, subiculum and right CA2_3 and CA4_DG (p < 0.05, FDR corrected). The volume of these regions was positively correlated with NP scores. Of note, these associations depended on the cognitive status but not on the APOE ε4 status. The left subiculum and presubiculum volume were positively correlated with the Montreal Cognitive Assessment (MoCA) scores only in the MCI patients. Conclusion: Atrophy of the hippocampal subfields may be a powerful biomarker for MCI in the Chinese population.

Adeptus ◽  
2018 ◽  
Author(s):  
Ludmiła Janion

„Let’s not be too eager about equality” – brain sex, heteronormativity, and the scientific mystiqueThe article analyses the role of brain sex in Polish public discourse of the last years. The authors of a popular book Brain Sex claim that differences between women and men stem from differences in the brain structure, and because of that they are universal and unchangeable; feminism is based on misrepresentation of science. This thesis was overtaken by right-wing journalists, as it gave scientific justification to conservative gender politics and contemplementarity – the gender ontology of the Catholic church. However, in the rightwing journalism a significant aspect of brain sex theory is silenced, namely, the claim that homo- and transsexuality result from disorders in brain development; they are unchangeable and should be accepted. Despite its conservative roots, brain sex was popularized in liberal media as well. The aura of science that accompanied this popular theory allowed to naturalize its anti-feminism and heteronormativity. This phenomenon is discussed on the basis of media activity of two Polish scientists who are popular both in right-wing and liberal media: Anna Grabowska and Jerzy Vetulani. Both present brain sex theory as objective, universally accepted truth, which is attacked in the name of the leftist ideology by ignorant activists who deny science. „Nie popadajmy w przesadę z tą równością” – płeć mózgu, heteronorma i mistyka naukowościArtykuł analizuje rolę płci mózgu w polskim dyskursie publicznym ostatnich lat. Autorzy niezwykle popularnej w Polsce książki Płeć mózgu twierdzą, że różnice między kobietami i mężczyznami wynikają z różnic w budowie mózgów, a przez to są uniwersalne i niezmienne, feminizm zaś jest oparty na fałszowaniu nauki. Teza ta została podchwycona przez prawicowych publicystów, ponieważ nadawała naukową legitymację konserwatywnej polityce płci oraz komplementaryzmowi – ontologii płci przyjętej przez Kościół katolicki. W prawicowym piśmiennictwie przemilcza się jednak istotny aspekt płci mózgu, mianowicie twierdzenie, że homo- i transseksualność wynikają z wad w rozwoju mózgu, są niezmienne i powinny być akceptowane. Mimo swoich konserwatywnych korzeni płeć mózgu była popularyzowana także w mediach liberalnych. Nimb naukowości, którym otaczany był popularny pogląd, pozwalał naturalizować związane z nim antyfeminizm i heteronormatywność. Zjawisko to omówione jest na podstawie działalności popularyzatorskiej dwojga naukowców, cieszących się popularnością zarówno w prawicowych, jak i liberalnych mediach: Anny Grabowskiej i Jerzego Vetulaniego. Oboje przedstawiali płeć mózgu jako obiektywną, powszechnie uznawaną naukową prawdę, z którą w imię lewicowej ideologii próbują walczyć nieakceptujący ustaleń nauki aktywiści.


2018 ◽  
Vol 51 (6) ◽  
pp. 1702450 ◽  
Author(s):  
Sébastien Celle ◽  
Claire Boutet ◽  
Cédric Annweiler ◽  
Jean-Claude Barthélémy ◽  
Frédéric Roche

The link between sleep apnoea and brain structure is unclear; although dysfunction of the hippocampus, middle temporal gyrus and brainstem/cerebellum have been observed previously. However, this link has been little explored in elderly subjects. The aim of this study was to explore the link between sleep apnoea and the brain in an elderly population.226 asymptomatic elderly subjects (age mean±sd 75.3±0.9 years, range 72.3–77.8 years) from the PROOF (Evaluation of Ageing, Autonomic Nervous System Activity and Cardiovascular Events) cohort study were explored using linear voxel-based or cortical thickness with apnoea/hypopnoea index (AHI; mean±sd 15.9±11.5 events·h−1, range 6–63.6 events·h−1) as a covariate of main interest. The brain volumes of 20 control subjects, 18 apnoeic (AHI >29 events·h−1) treated patients and 20 apnoeic untreated patients from this population were compared using voxel-based morphometry, cortical thickness or surface-based analyses.AHI was not associated with any change in local brain volume, cortical thickness or cortex surface. Control subjects, apnoeic treated and untreated patients were not different in terms of local brain volume, cortical thickness or surface.In a specific population of asymptomatic elderly healthy subjects, sleep apnoea does not seem to be associated with a change in local brain volume or in cortical thickness.


2021 ◽  
Vol 15 ◽  
Author(s):  
Madhukar Dwivedi ◽  
Neha Dubey ◽  
Aditya Jain Pansari ◽  
Raju Surampudi Bapi ◽  
Meghoranjani Das ◽  
...  

Previous cross-sectional studies reported positive effects of meditation on the brain areas related to attention and executive function in the healthy elderly population. Effects of long-term regular meditation in persons with mild cognitive impairment (MCI) and Alzheimer’s disease dementia (AD) have rarely been studied. In this study, we explored changes in cortical thickness and gray matter volume in meditation-naïve persons with MCI or mild AD after long-term meditation intervention. MCI or mild AD patients underwent detailed clinical and neuropsychological assessment and were assigned into meditation or non-meditation groups. High resolution T1-weighted magnetic resonance images (MRI) were acquired at baseline and after 6 months. Longitudinal symmetrized percentage changes (SPC) in cortical thickness and gray matter volume were estimated. Left caudal middle frontal, left rostral middle frontal, left superior parietal, right lateral orbitofrontal, and right superior frontal cortices showed changes in both cortical thickness and gray matter volume; the left paracentral cortex showed changes in cortical thickness; the left lateral occipital, left superior frontal, left banks of the superior temporal sulcus (bankssts), and left medial orbitofrontal cortices showed changes in gray matter volume. All these areas exhibited significantly higher SPC values in meditators as compared to non-meditators. Conversely, the left lateral occipital, and right posterior cingulate cortices showed significantly lower SPC values for cortical thickness in the meditators. In hippocampal subfields analysis, we observed significantly higher SPC in gray matter volume of the left CA1, molecular layer HP, and CA3 with a trend for increased gray matter volume in most other areas. No significant changes were found for the hippocampal subfields in the right hemisphere. Analysis of the subcortical structures revealed significantly increased volume in the right thalamus in the meditation group. The results of the study point out that long-term meditation practice in persons with MCI or mild AD leads to salutary changes in cortical thickness and gray matter volumes. Most of these changes were observed in the brain areas related to executive control and memory that are prominently at risk in neurodegenerative diseases.


2019 ◽  
Author(s):  
Budhachandra Khundrakpam ◽  
Suparna Choudhury ◽  
Uku Vainik ◽  
Noor Al-Sharif ◽  
Neha Bhutani ◽  
...  

AbstractStudies have pointed to the role of the brain in mediating the effects of the social environment of the developing child on life outcomes. Since brain development involves nonlinear trajectories, these effects of the child’s social context will likely have age-related differential associations with the brain. However, there is still a dearth of integrative research investigating the interplay between neurodevelopmental trajectories, social milieu and life outcomes. We set out to fill this gap, focusing specifically on the role of socioeconomic status, SES (indexed by parental occupation) on brain and cognitive development by analyzing MRI scans from 757 typically-developing subjects (age = 3-21 years). We observed nonlinear interaction of age and SES on cortical thickness, specifically a significant positive association between SES and thickness around 9-13 years at several cortical regions. Using a moderated mediation model, we observed that cortical thickness mediated the link between SES and language abilities, and this mediation was moderated by ‘age’ in a quadratic pattern, indicating a pronounced SES-effect during early adolescence. Our results, drawn from cross-sectional data, provide a basis for further longitudinal studies to test whether early adolescence may be a sensitive time window for the impact of SES on brain and cognitive development.


2019 ◽  
Author(s):  
Nandita Vijayakumar ◽  
Elizabeth Shirtcliff ◽  
Michelle L Byrne ◽  
Kathryn L. Mills ◽  
Theresa W Cheng ◽  
...  

Neuroimaging research has highlighted the role of puberty in structural brain development in humans, but studies investigating the mechanistic role of hormones in this association have produced inconsistent findings. Limitations of current approaches to hormonal assessments have long been recognized, as basal hormone levels are susceptible to momentary influences (in particular, circadian rhythmicity and menstrual cyclicity). However, emerging research suggests that a novel method of assaying pubertal hormone concentrations in hair may overcome some of these issues by capturing hormonal exposure across a longer period of time. This study is the first to compare associations between hormone concentrations measured via hair and saliva with brain structure in a sample of early adolescent females (N = 112, 10-13 years of age). Estradiol, testosterone, and DHEA concentrations were assayed from i) 5cm hair samples collected proximal to the scalp, reflecting approximately 5 months of hormonal exposure, and ii) repeated weekly saliva samples collected over the course of one month. Participants also underwent structural MRI scans, and estimates of cortical thickness and subcortical volume were obtained. Findings revealed that pubertal hormones in saliva samples exhibited strongest associations with parieto-occipital cortices. Comparatively, hair hormone concentrations exhibited stronger negative associations with cingulate and lateral prefrontal cortical thickness, which may reflect unique developmental processes that occur across longer periods of hormonal exposure. However, controlling for pubertal stage removed much of the cortical associations with hormones in saliva, and resulted in minimal change in cortical associations with hormones in hair. Thus hormone concentrations in hair may reflect biological processes not captured by self-reported pubertal stage that influence brain development. Further research is needed to improve our understanding of these potentially unique neurodevelopmental processes captured by saliva and hair hormone concentrations.


1993 ◽  
Vol 10 (1) ◽  
pp. 2-5
Author(s):  
Lesley J. Rogers

AbstractCurrently there is an increase in the number of articles published in scientific journals and in the popular scientific media that claim a biological basis for sex differences in cognition and in certain structures in the brain. It can be argued that there is over-emphasis on the differences rather than similarities between the sexes, but it is even more important to question the assumed causation of the differences. This paper discusses recent evidence for an interactive role of early experience and hormonal condition in determining sex differences in brain structure and function. Although early studies using rats were thought to show that the male sex hormone, testosterone, acts on the brain in early life to direct its differentiation into either the male or female form, it is know known that this result comes about indirectly by changing the mother’s behaviour towards the pups. The hormone does not act on the brain directly but rather it alters the environment in which the young animals are rasied and this, in turn, influences the development of the brain. Indeed, the brain is in dynamic register with its environment both during development and in adulthood. Other examples also show that old ideas of rigid biological determination of brain structure and function need to be laid aside.The hypotheses for hormonal causation of sex differences humans rely heavily, if not exclusively, on the earlier interpretation of the experiments with rats, and there seems to be resistance to changing these notions based on the new discoveries. Apparently, there is strong pressure to cling on to biological determinist theories for sex differences in behaviour, and this has profound effects on social and educational policy. For example, biological determinism has been used to justify under representation of women in certain professions. Realisation of the dramatic effects that environmental stimulation and learning can have on the development of brain and behaviour leads us to an optimistic position for social change towards equality for women.


GeroPsych ◽  
2020 ◽  
Vol 33 (2) ◽  
pp. 101-114
Author(s):  
Gebhard Sammer ◽  
Eva Lenz

Abstract. MoCA is a short cognitive screening tool. We examined the relationship of MoCA performance to white matter integrity, gray matter volume, and surface-based measurements at normal aging in a study in which older and younger cognitively unaffected subjects participated. The sample was split according to MoCA performance, and the data were analyzed using a general linear model (Age × MoCA). We found effects in the expected direction for all methods. The main effects on age and performance as well as interactions occurred for regions associated with aging, pathological and nonpathological. Older low-performing subjects showed structural deficits compared to older high-performing subjects. Therefore, the global index of cognitive status reflects relevant features of the brain structure.


2021 ◽  
Vol 14 ◽  
Author(s):  
Zhiting Ren ◽  
Cheng Liu ◽  
Jie Meng ◽  
Qiang Liu ◽  
Liang Shi ◽  
...  

Openness to experience (OTE) has relatively stable and heritable characteristics. Previous studies have used candidate gene approaches to explore the genetic mechanisms of OTE, but genome-wide polygenic scores have a greater genetic effect than other genetic analysis methods, and previous studies have never examined the potential effect of OTE on this cumulative effect at the level of the brain mechanism. In the present study, we aim to explore the associations between polygenic scores (PGSs) of OTE and brain structure and functions. First, the results of PGSs of OTE at seven different thresholds were calculated in a large Chinese sample (N = 586). Then, we determined the associations between PGSs of OTE and cortical thickness and functional connectivity. The results showed that PGSs of OTE was negatively correlated with the thickness of the fusiform gyrus, and PGSs of OTE were negatively associated with the functional connectivity between the left intraparietal sulcus (IPS) and the right posterior occipital lobe. These findings may suggest that the brain structure of fusiform gyrus and brain functions of IPS and posterior occipital lobe are partly regulated by OTE-related genetic factors.


2021 ◽  
Author(s):  
Senthilkumar Deivasigamani ◽  
Mariya Timotey Miteva ◽  
Silvia Natale ◽  
Daniel Gutierrez-Barragan ◽  
Bernadette Basilico ◽  
...  

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we show that mice lacking the complement 3 receptor (C3r), the major microglia complement receptor, fail to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking C3r show a deficit in the perinatal elimination of neurons, both in the retina as well as in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a preferential role for complement in promoting neuronal elimination in the developing brain and argue for a reconsideration of the role of complement in synaptic pruning.


2020 ◽  
pp. 1-4
Author(s):  
Galitskaya Viktoriya ◽  
Drigas Athanasios ◽  
Galitskaya Viktoriya

The present article is a literature review of recent researches that have to do with children with mathematical learning disabilities especially dyscalculia and ageometria. Our focus is on researches regarding neurosciences, mainly on the brain structure and the areas where various mathematical processes are performed. In addition, we present researches that show the role of hippocampus during arithmetic problem solving.


Sign in / Sign up

Export Citation Format

Share Document