scholarly journals Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids

2021 ◽  
pp. 1-20
Author(s):  
Gyöngyi Cinege ◽  
Lilla B. Magyar ◽  
Attila L. Kovács ◽  
Zita Lerner ◽  
Gábor Juhász ◽  
...  

Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in <i>Drosophila ananassae</i> after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Kondratova ◽  
Urszula Czerwinska ◽  
Nicolas Sompairac ◽  
Sebastian D. Amigorena ◽  
Vassili Soumelis ◽  
...  

Abstract The lack of integrated resources depicting the complexity of the innate immune response in cancer represents a bottleneck for high-throughput data interpretation. To address this challenge, we perform a systematic manual literature mining of molecular mechanisms governing the innate immune response in cancer and represent it as a signalling network map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived suppressor cells and natural killers are constructed and integrated into a comprehensive meta map of the innate immune response in cancer. The meta-map contains 1466 chemical species as nodes connected by 1084 biochemical reactions, and it is supported by information from 820 articles. The resource helps to interpret single cell RNA-Seq data from macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-tumor sub-populations within each cell type. Here, we report a new open source analytic platform that supports data visualisation and interpretation of tumour microenvironment activity in cancer.


2020 ◽  
Vol 38 (1) ◽  
pp. 79-98 ◽  
Author(s):  
Ming-Ming Hu ◽  
Hong-Bing Shu

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2274-2274
Author(s):  
Adam Corken ◽  
Susan Russell ◽  
Judith Dent ◽  
Steven Post ◽  
Jerry Ware

Abstract The platelet glycoprotein (GP) Ib-IX receptor complex is expressed exclusively on the surface of platelets and is well characterized as a primary adhesion receptor supporting normal hemostasis and pathologic thrombosis. Beyond hemostasis and thrombosis, platelets can also participate in the innate immune response and inflammation. While the platelet as a contributor to the immune continuum is recognized, many aspects of the molecular mechanisms whereby platelets influence the immune response are still undefined. Here, we report studies using a murine model of GP Ib-IX deficiency linking GP Ib-IX to the immune response associated with polymicrobial sepsis, as modeled by cecal ligation and puncture (CLP). In the CLP model, genetic absence of the major GP Ib-IX hemostatic ligand, von Willebrand factor (VWF), improves survival following CLP when compared to control wild-type animals (p= 0.003, Logrank analysis). This suggests a VWF role in thrombosis contributes to survival outcome following CLP. In contrast, genetic absence of the VWF platelet receptor, GP Ib-IX, does not improve survival with no statistical difference comparing wild-type animals to GPIb-IX deficient animals. The molecular basis to explain improved survival in VWF-deficient (ligand deficient) but not GPIb-IX deficient (receptor deficient) animals was pursued. We tested the hypothesis GPIb-IX has normal physiologic and pathophysiologic functions beyond platelet adhesion influencing infection and an inflammatory response. Indeed, GPIb-IX influencing the innate immune response is not completely unexpected since a hallmark structural feature of each subunit of the GPIb-IX receptor is leucine rich repeats, the common motif to all members of the toll like receptor family (TLRs). Whether structural similarities are a consequence of ancestral origins for GPIb-IX and TLRs is unknown. We first documented in the absence of murine platelet GP Ib-IX there are reduced platelet-neutrophil and platelet-monocyte interactions under normal conditions and following CLP in whole blood. Whether there are physiologic consequences for disrupting a platelet/monocyte and/or platelet/neutrophil axis was determined via multianalyte profiling of circulating cytokine levels on a Luminex analyzer following CLP. In the absence of GP Ib-IX there is a robust and statistically significant increase 24 hrs following CLP in some of the major proinflammatory cytokines produced by monocytes and macrophages, including TNFα, MCP-1, MIP-β, IL-6, and IL-15. Increases in cytokines, such as IL-5 and IL-13, associated with other immune cells were also observed. These results highlight a coagulation/inflammation interface where the platelet, and specifically GP Ib-IX, contributes to the pathophysiology of CLP. On the one hand, absence of platelet GPIb-IX reduces thrombotic potential, but it occurs at the expense of upregulation of inflammatory cytokine release leading to a reduced survival in CLP. Clearly, survival outcomes in CLP reflect a complex dysregulation of coagulation and inflammation where platelet GPIb-IX likely contributes to both processes with physiologic consequences. Understanding dysregulation of the coagulation/ inflammation interface and identifying a platelet receptor (GPIb-IX) critical to both adds new information to this complex set of pathophysiologic events Sharing the common structural motifs, leucine rich repeats, with the well characterized family of toll-like receptors, platelet GPIb-IX should now be considered an active participant in the inflammatory cascade. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 23 (2) ◽  
pp. 111-127 ◽  
Author(s):  
James M Battisti ◽  
Lance A Watson ◽  
Myo T Naung ◽  
Adam M Drobish ◽  
Ekaterina Voronina ◽  
...  

The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(–) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(–) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(–) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock.


2020 ◽  
Vol 21 (15) ◽  
pp. 5437 ◽  
Author(s):  
Alessandra Torina ◽  
Sara Villari ◽  
Valeria Blanda ◽  
Stefano Vullo ◽  
Marco Pio La Manna ◽  
...  

Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1β and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2–5 after tick bite. The ongoing research field of “inflammasome biology” focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
P Pfeifer ◽  
M Voss ◽  
B Wonnenberg ◽  
M Bischoff ◽  
F Langer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document