scholarly journals Ensemble deep learning for tuberculosis detection

Author(s):  
Mohd Hanafi Ahmad Hijazi ◽  
Leong Qi Yang ◽  
Rayner Alfred ◽  
Hairulnizam Mahdin ◽  
Razali Yaakob

Tuberculosis (TB) is one of the deadliest infectious disease in the world. TB is caused by a type of tubercle bacillus called Mycobacterium Tuberculosis. Early detection of TB is pivotal to decrease the morbidity and mortality. TB is diagnosed by using the chest x-ray and a sputum test. Challenges for radiologists are to avoid confused and misdiagnose TB and lung cancer because they mimic each other. Semi-automated TB detection using machine learning found in the literature requires identification of objects of interest. The similarity of tissues, veins and small nodules presenting the image at the initial stage may hamper the detection. In this paper, an approach to detect TB, that does not require segmentation of objects of interest, based on ensemble deep learning, is presented. Evaluation on publicly available datasets show that the proposed approach produced a model that recorded the best accuracy, sensitivity and specificity of 91.0%, 89.6% and 90.7% respectively.

Author(s):  
Mohd Hanafi Ahmad Hijazi ◽  
Stefanus Kieu Tao Hwa ◽  
Abdullah Bade ◽  
Razali Yaakob ◽  
Mohammad Saffree Jeffree

Tuberculosis (TB) is a disease caused by Mycobacterium Tuberculosis. Detection of TB at an early stage reduces mortality. Early stage TB is usually diagnosed using chest x-ray inspection. Since TB and lung cancer mimic each other, it is a challenge for the radiologist to avoid misdiagnosis. This paper presents an ensemble deep learning for TB detection using chest x-ray and Canny edge detected images. This method introduces a new type of feature for the TB detection classifiers, thereby increasing the diversity of errors of the base classifiers. The first set of features were extracted from the original x-ray images, while the second set of features were extracted from the edge detected image. To evaluate the proposed approach, two publicly available datasets were used. The results show that the proposed ensemble method produced the best accuracy of 89.77%, sensitivity of 90.91% and specificity of 88.64%. This indicates that using different types of features extracted from different types of images can improve the detection rate.


Author(s):  
Petr Arkadievich Ilyin

Blood expectoration or hemoptysis is the coughing up of sputum with blood from the larynx, bronchi or lungs. Hemoptysis is most often caused by diseases of the respiratory tract and lungs — bronchitis or pneumonia, as well as lung cancer, aspergilloma, tuberculosis, bronchiectasis, pulmonary embolism, etc. In the diagnostic investigation of the cause of hemoptysis, it is important to take a detailed history (in the case of an epidemiological history, a laboratory analysis of the secreted sputum for the detection of the causative agent of an infectious disease is necessary), to make the correct interpretation of the patient’s complaints and an assessment of the nature of the sputum (differential diagnosis with bleeding from the upper gastrointestinal tract). A chest X-ray is performed and, then, if indicated, computed tomography, bronchoscopy, and other studies are made. The article presents an algorithm for differential diagnostic investigation of hemoptysis in a patient


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yar Muhammad ◽  
Mohammad Dahman Alshehri ◽  
Wael Mohammed Alenazy ◽  
Truong Vinh Hoang ◽  
Ryan Alturki

Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease.


Author(s):  
Anshul, Et. al.

COVID-19 virus belongs to the severe acute respiratory syndrome (SARS) family raised a situation of health emergency in almost all the countries of the world. Numerous machine learning and deep learning based techniques are used to diagnose COVID positive patients using different image modalities like CT SCAN, X-RAY, or CBX, etc. This paper provides the works done in COVID-19 diagnosis, the role of ML and DL based methods to solve this problem, and presents limitations with respect to COVID-19 diagnosis.


Author(s):  
Nour Eldeen M. Khalifa ◽  
Florentin Smarandache ◽  
Mohamed Loey

Coronavirus, also known as COVID-19, has spread to several countries around the world. It was announced as a pandemic disease by The World Health Organization (WHO) in 2020 for its devastating impact on humans. With the advancements in computer science algorithms, the detection of this type of virus in the early stages is urgently needed for the fast recovery of patients. In this paper, a neutrosophic with a deep learning model for the detection of COVID-19 from chest X-ray medical digital images is presented. The proposed model relies on neutrosophic theory by converting the medical images from the grayscale spatial domain to the neutrosophic domain. The neutrosophic domain consists of three types of images and they are, the True (T) images, the Indeterminacy (I) images, and the Falsity (F) images. Using neutrosophic images has positively affected the accuracy of the proposed model. The dataset used in this research has been collected from different sources as there is no benchmark dataset for COVID-19 chest X-ray until the writing of this research. The dataset consists of four classes and they are COVID-19, Normal, Pneumonia bacterial, and Pneumonia virus. After the conversion to the neutrosophic domain, the images are fed into three different deep transfer models and they are Alexnet, Googlenet, and Restnet18. Those models are selected as they have a small number of layers on their architectures and they have been used with related work. To test the performance of the conversion to the neutrosophic domain, four scenarios have been tested. The first scenario is training the deep transfer models with True (T) neutrosophic images only. The second one is training on Indeterminacy (I) neutrosophic images, while the third scenario is training the deep models over the Falsity (F) neutrosophic images. The fourth scenario is training over the combined (T, I, F) neutrosophic images. According to the experimental results, the combined (T, I, F) neutrosophic images achieved the highest accuracy possible for the validation, testing and all performance metrics such Precision, Recall and F1 Score using Resnet18 as a deep transfer model. The proposed model achieved a testing accuracy with 78.70%. Furthermore, the proposed model using neutrosophic and Resnet18 had achieved superior testing accuracy with a related work which achieved 52.80% with the same experimental environmental setup and the same deep learning hyperparameters.


Author(s):  
Tanishka Dodiya

Abstract: COVID-19 also famously known as Coronavirus is one of the deadliest viruses found in the world, which has a high rate in both demise and spread. This has caused a severe pandemic in the world. The virus was first reported in Wuhan, China, registering causes like pneumonia. The first case was encountered on December 31, 2019. As of 20th October 2021, more than 242 million cases have been reported in more than 188 countries, and it has around 5 million deaths. COVID- 19 infected persons have pneumonia-like symptoms, and the infection damages the body's respiratory organs, making breathing difficult. The elemental clinical equipment as of now being employed for the analysis of COVID-19 is RT-PCR, which is costly, touchy, and requires specific clinical workforce. According to recent studies, chest X-ray scans include important information about the start of the infection, and this information may be examined so that diagnosis and treatment can begin sooner. This is where artificial intelligence meets the diagnostic capabilities of intimate clinicians. X-ray imaging is an effectively available apparatus that can be an astounding option in the COVID-19 diagnosis. The architecture usually used are VGG16, ResNet50, DenseNet121, Xception, ResNet18, etc. This deep learning based COVID detection system can be installed in hospitals for early diagnosis, or it can be used as a second opinion. Keywords: COVID-19, Deep Learning, CNN, CT-Image, Transfer Learning, VGG, ResNet, DenseNet


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6655
Author(s):  
Michael Horry ◽  
Subrata Chakraborty ◽  
Biswajeet Pradhan ◽  
Manoranjan Paul ◽  
Douglas Gomes ◽  
...  

Lung cancer is the leading cause of cancer death and morbidity worldwide. Many studies have shown machine learning models to be effective in detecting lung nodules from chest X-ray images. However, these techniques have yet to be embraced by the medical community due to several practical, ethical, and regulatory constraints stemming from the “black-box” nature of deep learning models. Additionally, most lung nodules visible on chest X-rays are benign; therefore, the narrow task of computer vision-based lung nodule detection cannot be equated to automated lung cancer detection. Addressing both concerns, this study introduces a novel hybrid deep learning and decision tree-based computer vision model, which presents lung cancer malignancy predictions as interpretable decision trees. The deep learning component of this process is trained using a large publicly available dataset on pathological biomarkers associated with lung cancer. These models are then used to inference biomarker scores for chest X-ray images from two independent data sets, for which malignancy metadata is available. Next, multi-variate predictive models were mined by fitting shallow decision trees to the malignancy stratified datasets and interrogating a range of metrics to determine the best model. The best decision tree model achieved sensitivity and specificity of 86.7% and 80.0%, respectively, with a positive predictive value of 92.9%. Decision trees mined using this method may be considered as a starting point for refinement into clinically useful multi-variate lung cancer malignancy models for implementation as a workflow augmentation tool to improve the efficiency of human radiologists.


Sign in / Sign up

Export Citation Format

Share Document