COVID-19 Chest X-Ray Images Diagnosis: A Neutrosophic and Deep Transfer Learning Approach

Author(s):  
Nour Eldeen M. Khalifa ◽  
Florentin Smarandache ◽  
Mohamed Loey

Coronavirus, also known as COVID-19, has spread to several countries around the world. It was announced as a pandemic disease by The World Health Organization (WHO) in 2020 for its devastating impact on humans. With the advancements in computer science algorithms, the detection of this type of virus in the early stages is urgently needed for the fast recovery of patients. In this paper, a neutrosophic with a deep learning model for the detection of COVID-19 from chest X-ray medical digital images is presented. The proposed model relies on neutrosophic theory by converting the medical images from the grayscale spatial domain to the neutrosophic domain. The neutrosophic domain consists of three types of images and they are, the True (T) images, the Indeterminacy (I) images, and the Falsity (F) images. Using neutrosophic images has positively affected the accuracy of the proposed model. The dataset used in this research has been collected from different sources as there is no benchmark dataset for COVID-19 chest X-ray until the writing of this research. The dataset consists of four classes and they are COVID-19, Normal, Pneumonia bacterial, and Pneumonia virus. After the conversion to the neutrosophic domain, the images are fed into three different deep transfer models and they are Alexnet, Googlenet, and Restnet18. Those models are selected as they have a small number of layers on their architectures and they have been used with related work. To test the performance of the conversion to the neutrosophic domain, four scenarios have been tested. The first scenario is training the deep transfer models with True (T) neutrosophic images only. The second one is training on Indeterminacy (I) neutrosophic images, while the third scenario is training the deep models over the Falsity (F) neutrosophic images. The fourth scenario is training over the combined (T, I, F) neutrosophic images. According to the experimental results, the combined (T, I, F) neutrosophic images achieved the highest accuracy possible for the validation, testing and all performance metrics such Precision, Recall and F1 Score using Resnet18 as a deep transfer model. The proposed model achieved a testing accuracy with 78.70%. Furthermore, the proposed model using neutrosophic and Resnet18 had achieved superior testing accuracy with a related work which achieved 52.80% with the same experimental environmental setup and the same deep learning hyperparameters.

AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 418-435
Author(s):  
Khandaker Haque ◽  
Ahmed Abdelgawad

Deep Learning has improved multi-fold in recent years and it has been playing a great role in image classification which also includes medical imaging. Convolutional Neural Networks (CNNs) have been performing well in detecting many diseases including coronary artery disease, malaria, Alzheimer’s disease, different dental diseases, and Parkinson’s disease. Like other cases, CNN has a substantial prospect in detecting COVID-19 patients with medical images like chest X-rays and CTs. Coronavirus or COVID-19 has been declared a global pandemic by the World Health Organization (WHO). As of 8 August 2020, the total COVID-19 confirmed cases are 19.18 M and deaths are 0.716 M worldwide. Detecting Coronavirus positive patients is very important in preventing the spread of this virus. On this conquest, a CNN model is proposed to detect COVID-19 patients from chest X-ray images. Two more CNN models with different number of convolution layers and three other models based on pretrained ResNet50, VGG-16 and VGG-19 are evaluated with comparative analytical analysis. All six models are trained and validated with Dataset 1 and Dataset 2. Dataset 1 has 201 normal and 201 COVID-19 chest X-rays whereas Dataset 2 is comparatively larger with 659 normal and 295 COVID-19 chest X-ray images. The proposed model performs with an accuracy of 98.3% and a precision of 96.72% with Dataset 2. This model gives the Receiver Operating Characteristic (ROC) curve area of 0.983 and F1-score of 98.3 with Dataset 2. Moreover, this work shows a comparative analysis of how change in convolutional layers and increase in dataset affect classifying performances.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 651 ◽  
Author(s):  
Mohamed Loey ◽  
Florentin Smarandache ◽  
Nour Eldeen M. Khalifa

The coronavirus (COVID-19) pandemic is putting healthcare systems across the world under unprecedented and increasing pressure according to the World Health Organization (WHO). With the advances in computer algorithms and especially Artificial Intelligence, the detection of this type of virus in the early stages will help in fast recovery and help in releasing the pressure off healthcare systems. In this paper, a GAN with deep transfer learning for coronavirus detection in chest X-ray images is presented. The lack of datasets for COVID-19 especially in chest X-rays images is the main motivation of this scientific study. The main idea is to collect all the possible images for COVID-19 that exists until the writing of this research and use the GAN network to generate more images to help in the detection of this virus from the available X-rays images with the highest accuracy possible. The dataset used in this research was collected from different sources and it is available for researchers to download and use it. The number of images in the collected dataset is 307 images for four different types of classes. The classes are the COVID-19, normal, pneumonia bacterial, and pneumonia virus. Three deep transfer models are selected in this research for investigation. The models are the Alexnet, Googlenet, and Restnet18. Those models are selected for investigation through this research as it contains a small number of layers on their architectures, this will result in reducing the complexity, the consumed memory and the execution time for the proposed model. Three case scenarios are tested through the paper, the first scenario includes four classes from the dataset, while the second scenario includes 3 classes and the third scenario includes two classes. All the scenarios include the COVID-19 class as it is the main target of this research to be detected. In the first scenario, the Googlenet is selected to be the main deep transfer model as it achieves 80.6% in testing accuracy. In the second scenario, the Alexnet is selected to be the main deep transfer model as it achieves 85.2% in testing accuracy, while in the third scenario which includes two classes (COVID-19, and normal), Googlenet is selected to be the main deep transfer model as it achieves 100% in testing accuracy and 99.9% in the validation accuracy. All the performance measurement strengthens the obtained results through the research.


2021 ◽  
Vol 12 (3) ◽  
pp. 011-019
Author(s):  
Haris Uddin Sharif ◽  
Shaamim Udding Ahmed

At the end of 2019, a new kind of coronavirus (SARS-CoV-2) suffered worldwide and has become the pandemic coronavirus (COVID-19). The outbreak of this virus let to crisis around the world and kills millions of people globally. On March 2020, WHO (World Health Organization) declared it as pandemic disease. The first symptom of this virus is identical to flue and it destroys the human respiratory system. For the identification of this disease, the first key step is the screening of infected patients. The easiest and most popular approach for screening of the COVID-19 patients is chest X-ray images. In this study, our aim to automatically identify the COVID-19 and Pneumonia patients by the X-ray image of infected patient. To identify COVID19 and Pneumonia disease, the convolution Neural Network was training on publicly available dataset on GitHub and Kaggle. The model showed the 98% and 96% training accuracy for three and four classes respectively. The accuracy scores showed the robustness of both model and efficiently deployment for identification of COVID-19 patients.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1996
Author(s):  
Junghoon Park ◽  
Il-Youp Kwak ◽  
Changwon Lim

The SARS-CoV-2 virus has spread worldwide, and the World Health Organization has declared COVID-19 pandemic, proclaiming that the entire world must overcome it together. The chest X-ray and computed tomography datasets of individuals with COVID-19 remain limited, which can cause lower performance of deep learning model. In this study, we developed a model for the diagnosis of COVID-19 by solving the classification problem using a self-supervised learning technique with a convolution attention module. Self-supervised learning using a U-shaped convolutional neural network model combined with a convolution block attention module (CBAM) using over 100,000 chest X-Ray images with structure similarity (SSIM) index captures image representations extremely well. The system we proposed consists of fine-tuning the weights of the encoder after a self-supervised learning pretext task, interpreting the chest X-ray representation in the encoder using convolutional layers, and diagnosing the chest X-ray image as the classification model. Additionally, considering the CBAM further improves the averaged accuracy of 98.6%, thereby outperforming the baseline model (97.8%) by 0.8%. The proposed model classifies the three classes of normal, pneumonia, and COVID-19 extremely accurately, along with other metrics such as specificity and sensitivity that are similar to accuracy. The average area under the curve (AUC) is 0.994 in the COVID-19 class, indicating that our proposed model exhibits outstanding classification performance.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yar Muhammad ◽  
Mohammad Dahman Alshehri ◽  
Wael Mohammed Alenazy ◽  
Truong Vinh Hoang ◽  
Ryan Alturki

Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 669
Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Talha Anwar ◽  
Hind S. Alsaif ◽  
Sara Mhd. Bachar Chrouf ◽  
...  

The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising results achieved by integrating machine learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process. In the current study, a model based on deep learning was proposed for the automated diagnosis of COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19 diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam, KSA, which consists of 270 patient records. The experiments were carried out first with clinical data, second with the CXR, and finally with clinical data and CXR. The fusion technique was used to combine the clinical features and features extracted from images. The study found that integrating clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982. Further validation was performed by comparing the performance of the proposed system with the diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as a tool that can help the doctors in COVID-19 diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Manjit Kaur ◽  
Vijay Kumar ◽  
Vaishali Yadav ◽  
Dilbag Singh ◽  
Naresh Kumar ◽  
...  

COVID-19 has affected the whole world drastically. A huge number of people have lost their lives due to this pandemic. Early detection of COVID-19 infection is helpful for treatment and quarantine. Therefore, many researchers have designed a deep learning model for the early diagnosis of COVID-19-infected patients. However, deep learning models suffer from overfitting and hyperparameter-tuning issues. To overcome these issues, in this paper, a metaheuristic-based deep COVID-19 screening model is proposed for X-ray images. The modified AlexNet architecture is used for feature extraction and classification of the input images. Strength Pareto evolutionary algorithm-II (SPEA-II) is used to tune the hyperparameters of modified AlexNet. The proposed model is tested on a four-class (i.e., COVID-19, tuberculosis, pneumonia, or healthy) dataset. Finally, the comparisons are drawn among the existing and the proposed models.


Author(s):  
Tanishka Dodiya

Abstract: COVID-19 also famously known as Coronavirus is one of the deadliest viruses found in the world, which has a high rate in both demise and spread. This has caused a severe pandemic in the world. The virus was first reported in Wuhan, China, registering causes like pneumonia. The first case was encountered on December 31, 2019. As of 20th October 2021, more than 242 million cases have been reported in more than 188 countries, and it has around 5 million deaths. COVID- 19 infected persons have pneumonia-like symptoms, and the infection damages the body's respiratory organs, making breathing difficult. The elemental clinical equipment as of now being employed for the analysis of COVID-19 is RT-PCR, which is costly, touchy, and requires specific clinical workforce. According to recent studies, chest X-ray scans include important information about the start of the infection, and this information may be examined so that diagnosis and treatment can begin sooner. This is where artificial intelligence meets the diagnostic capabilities of intimate clinicians. X-ray imaging is an effectively available apparatus that can be an astounding option in the COVID-19 diagnosis. The architecture usually used are VGG16, ResNet50, DenseNet121, Xception, ResNet18, etc. This deep learning based COVID detection system can be installed in hospitals for early diagnosis, or it can be used as a second opinion. Keywords: COVID-19, Deep Learning, CNN, CT-Image, Transfer Learning, VGG, ResNet, DenseNet


Author(s):  
Gaurav Sharma

Abstract: After every 100 years, a pandemic comes and takes a great toll on the global civilization. This time its COVID-19 and the aftereffects are terrifying. As the symptoms for the disease are very common and are similar to common cold and viral influenza, the detection from symptoms is quite difficult. Although there are many methods devised but the detection of COVID19 has been a problem since the start, and we are still struggling to identify whether a person has the disease. This study proposes a unique model to identify the positive and negative cases using X-ray images of an individual as lungs are the first and most critical body part which gets affected by the virus which causes a deprecation in oxygen saturation. The proposed model is an ensemble of different CNN architectures which are Dense Net, NasNet-Large, Resnet-50, Inception Net, EfficientNetB0 and EfficientNetB1. The results show that the model reaches an accuracy of 99.6% on the tested dataset. Keywords: Deep learning, Convolutional Neural Networks, COVID-19, Ensemble Learning, EfficientNet


Sign in / Sign up

Export Citation Format

Share Document