scholarly journals Modelling and PID control system integration for quadcopter DJI F450 attitude stabilization

Author(s):  
N. M. Salma ◽  
Khairuddin Osman

<p><span style="font-family: Times New Roman;">In this paper we focus on the overall overview of the mathematical modelling of the DJI F450 UAV quadcopter, the hardware and software system integration based on PID control system for the attitude feedback. The parameter specification of the DJI F450 is fed into the mathematical model and implement a basic PID for the system. Future research using the DJI F450 model can benefit from this observation by implementing the modelling and tune in their own variable that varies, such as the overall of their weight. The data of PID control system simulation using the quadcopter frame model type DJI F450 parameter. The mathematical model for the quadcopter modelled DJI F450 is developed using Newton-Euler method. Altitude data for the control system is obtain from the analysis data of the Simulink simulation. The simulation is done using the Simulink toolbox inside the MATLAB software. From this paper, we can more understand the step involves in making a full control system of a quadcopter. The mathematical model for other type of quadcopter model can be implemented using the steps with their own parameter and achieve fast development.</span></p>

2021 ◽  
Vol 2113 (1) ◽  
pp. 012078
Author(s):  
Yang Song ◽  
Fangxiu Jia ◽  
Xiaoming Wang ◽  
Dingming Meng ◽  
Lei Zhuang

Abstract Based on the high control performance requirement of laser-guided mortar control system, the permanent magnet synchronous motor (PMSM) is adopted in this paper as the electromechanical actuator of the system, the mathematical model of the motor is analyzed, and the vector control technology is adopted to achieve precise control of position, speed and torque of the electromechanical actuator. Aiming at the characteristics of non-linearity, strong coupling and large parameter changes of the system in flight, an improved fuzzy neural network PID control method is proposed by combining the classical PID control algorithm with fuzzy control and neural network control algorithm to realize the real-time tuning and optimization of PID parameters. The mathematical model of the electromechanical actuator control system is established and simulated. The results show that the fuzzy neural network PID control has good tracking performance, small amplitude error, and strong adaptability to load changes.


Author(s):  
Bingwei Gao ◽  
Hao Guan ◽  
Wenming Tang ◽  
Wenlong Han ◽  
Shilong Xue

: In order to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot, and to meet the requirements of the system parameters in different stages of motion, this paper studies the position control system of the single-leg joint of the hydraulic quadruped robot: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system; And then, the speed PID control algorithm and speed planning algorithm are designed, so that the system can quickly respond to the changes of system input according to the requirements of different speeds; Finally, the joint position control system of the hydraulic quadruped robot is simulated and verified by experiments. Background: The mathematical model of the positioning system of the hydraulic quadruped robot is clear, but the parameters in the model have the characteristics of uncertainty and time-variation. In the joint position control system of a hydraulic quadruped robot, different motion stages have different requirements for system parameters. Objective: The purpose of this study is to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot and to meet the requirements of the system parameters in different stages of motion. Method: This research takes the hydraulic quadruped robot single-leg system as the research object and uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control method is designed and compared with the ordinary PID control by taking the positioning control accuracy of the robot before touching the ground as a standard to carry out the controlled trial. Results: In this research, the identification method and control algorithm are designed, and finally, the simulation and experimental research are carried out. The results of the simulation and experiment verify the correctness of the identification method and the effectiveness of the control algorithm. Conclusion: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control algorithm and speed planning algorithm are designed so that the system can quickly respond to the changes of system input according to the requirements of different speeds.


2013 ◽  
Vol 680 ◽  
pp. 488-494
Author(s):  
Hai Ming Niu ◽  
Zhong Xu Han ◽  
Huan Pao Huang ◽  
Hong Min Zhang

Base on the mathematical model of a common coordinated control system in field of thermal, by analyzing characteristics of the controlled object supercritical once-through boiler coordinated control system, the article puts forward suggestions for improvement, and verifies the results of the analysis by test.


2013 ◽  
Vol 436 ◽  
pp. 166-173
Author(s):  
A. Mihaela Mîţiu ◽  
Daniel Constantin Comeagă ◽  
Octavian G. Donţu

In this paper are presented some aspects of transmissibility control of mechanical systems with 1 DOF so that the effects of vibration on their action to be minimized. Some technical solutions that can be used for this purpose is analyzed. Starting from the mathematical model of an electro-mechanical system with 1 DOF, are identified the parameters which influence the effectiveness of the transmissibility control system using an electrodynamic actuator who work in "closed loop".


Author(s):  
Julián Andres Gómez Gómez ◽  
Camilo E. Moncada Guayazán ◽  
Sebastián Roa Prada ◽  
Hernando Gonzalez Acevedo

Abstract Gimbals are mechatronic systems well known for their use in the stabilization of cameras which are under the effect of sudden movements. Gimbals help keeping cameras at previously defined fixed orientations, so that the captured images have the highest quality. This paper focuses on the design of a Linear Quadratic Gaussian, LQG, controller, based on the physical modeling of a commercial Gimbal with two degrees of freedom (2DOF), which is used for first-person applications in unmanned aerial vehicle (UAV). This approach is proposed to make a more realistic representation of the system under study, since it guarantees high accuracy in the simulation of the dynamic response, as compared to the prediction of the mathematical model of the same system. The development of the model starts by sectioning the Gimbal into a series of interconnected links. Subsequently, a fixed reference system is assigned to each link body and the corresponding homogeneous transformation matrices are established, which will allow the calculation of the orientation of each link and the displacement of their centers of mass. Once the total kinetic and potential energy of the mechanical components are obtained, Lagrange’s method is utilized to establish the mathematical model of the mechanical structure of the Gimbal. The equations of motion of the system are then expressed in state space form, with two inputs, two outputs and four states, where the inputs are the torques produced by each one of the motors, the outputs are the orientation of the first two links, and the states are the aforementioned orientations along with their time derivatives. The state space model was implemented in MATLAB’s Simulink environment to compare its prediction of the transient response with the prediction obtained with the representation of the same system using MATLAB’s SimMechanics physical modelling interface. The mathematical model of each one of the three-phase Brushless DC motors is also expressed in state space form, where the three inputs of each motor model are the voltages of the corresponding motor phases, its two outputs are the angular position and angular velocity, and its four states are the currents in two of the phases, the orientation of the motor shaft and its rate of change. This model is experimentally validated by performing a switching sequence in both the simulation model and the physical system and observing that the transient response of the angular position of the motor shaft is in accordance with the theoretical model. The control system design process starts with the interconnection of the models of the mechanical components and the models of the Brushless DC Motor, using their corresponding state space representations. The resulting model features six inputs, two outputs and eight states. The inputs are the voltages in each phase of the two motors in the Gimbal, the outputs are the angular positions of the first two links, and the states are the currents in two of the phases for each motor and the orientations of the first two links, along with their corresponding time derivatives. An optimal LQG control system is designed using MATLAB’s dlqr and Kalman functions, which calculate the gains for the control system and the gains for the states estimated by the observer. The external excitation in each of the phases is carried out by pulse width modulation. Finally, the transient response of the overall system is evaluated for different reference points. The simulation results show very good agreement with the experimental measurements.


2013 ◽  
Vol 756-759 ◽  
pp. 372-375
Author(s):  
Hong Bin Tian

In order to increase the movement capability of the robotic visual system in three-dimension space, the paper designs an obstacle-avoidance algorithm based on robotic movement visual by effectively processing the visual information colleted by the robotics. This paper establishes a structural model of coordination control system. The obstacles can be effectively identified and avoided by the obstacle-avoidance theory in the robotics coordination operation. The mathematical model of the obstacle-avoidance algorithm can predict the locations of the obstacles. The experiment proves the proposed algorithm can avoid the obstacles in three-dimension space and the accuracy is very high.


Author(s):  
W M G Malalasekera ◽  
F Lockwood

A mathematical model has been applied to simulate model experiments of the 1987 King's Cross underground fire by the Department of Health and Safety Executive. The predicted growth of the fire is compared with the experimental data and in particular the predicted and measured times to ‘flashover’ are compared. The comparisons show exceptional agreement which, in part, may be fortuitous due to the need to facilitate the prediction of the early stages of the growth with the aid of an experimentally estimated fire strength. The good agreement nonetheless is also due to the full description of the radiation transfer which is a feature of the mathematical model. It is concluded that the flashover phenomenon that occurred at King's Cross was thermal radiation driven and that future research should be devoted to modelling the details of fire spread across a combustible surface.


Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrei Vasilevich Malchikov

This chapter describes various designs of multilink mobile robots intended to move inside the confined space of pipelines. The mathematical model that describes robot dynamics and controlled motion, which allows simulating different regimes of robot motion and determining design parameters of the device and its control system, is presented. The chapter contains the results of numerical simulations for different types of worm-like mobile robots. The experimental studies of the in-pipe robots prototypes and their analyses are presented in this chapter.


2018 ◽  
Vol 80 (6) ◽  
Author(s):  
Nur Aidya Hanum Aizam ◽  
Rabiatul Adawiyah Ibrahim ◽  
Raphael Lee Kuok Lung ◽  
Pang Yen Ling ◽  
Aidilla Mubarak

This study integrates mathematical model in the plan of producing a fish feed formulation by reducing the total cost without neglecting the nutrient requirements. This study focuses on producing the perfect combination of fish feed for Mystus nemurus sp. catfish in different stages of life. The mathematical model developed will consider their required nutrients in each stage, the cost of each ingredient and the amount of nutrients to be consumed (nutrient composition of fish feed ingredients). This research employs AIMMS mathematical software to assist with the computation. The results from this study obtain a much better combination of different ingredients compared to available commercial pellets in terms of nutrient composition and production cost. The combinations yield much cheaper costs yet boosts up the nutrient consumptions, which is an eye-opener for independent local fish farmers. Thorough discussion on utilizing the results with future research directions will also be included.


2012 ◽  
Vol 195-196 ◽  
pp. 1095-1101
Author(s):  
Le Luo ◽  
Lan Gao ◽  
Liang Chen ◽  
Liang Hu

This paper analyzes the characteristics of marine power station. The mathematical model and simulation model of synchronous generators AVR+PSS excitation control system was built. At last the simulation test of suddenly add load was did in MATLAB/simulink environment. The result shows that the excitation control system has well stability, rapidity and some robustness.


Sign in / Sign up

Export Citation Format

Share Document