scholarly journals Curcumin as an Anti-Proliferative Agent in Breast Cancer through RASSF1A, Bax, and Caspase-3 Protein

2021 ◽  
Vol 2 (1) ◽  
pp. 19-27
Author(s):  
Nunung Ainur Rahma ◽  
Harliansyah ◽  
Fransiscus D. Suyatna ◽  
Mpu Kanoko ◽  
Primariadewi Rustamadji ◽  
...  

Introduction: Curcumin is a polyphenol that has pharmacological activity that can inhibit tumor cell growth and induce apoptosis through various mechanisms. However, the specific mechanism of curcumin cytotoxicity remains controversial because of many anti- and pro-apoptotic signaling pathways in various cell types. This study aims to examine the relationship among curcumin on RASSF1A, Bax protein levels, and caspase-3 activity in supporting the apoptotic mechanism in CSA03 breast cancer cells. Method: Curcumin administration to cancer cells is based on differences in dosage with 24-hour incubation. Cytotoxicity after curcumin administration was determined using MTS. RASSF1A and Bax protein levels were tested through ELISA. Caspase-3 activity was used to determine apoptosis and was tested using flow cytometry. Results: The results indicated that curcumin had a cytotoxicity effect of 40.85 µg/mL. At concentrations of 40 µg/mL and 50 µg/mL, curcumin increases levels of protein RASSF1A (∆ = 26.53% and 47.35%, respectively), Bax (∆ = 48.79% and 386.15%), and caspase-3 (∆ = 1,678.51% and 1,871.889%) significantly. Conclusions: Curcumin exhibits anti-proliferative activity and apoptotic (Caspase-3) effects through activation of RASSF1A and Bax.

Author(s):  
Celal Güven ◽  
Eylem Taskın ◽  
Onder Yumtutas ◽  
Leyla Turker Sener ◽  
Yusuf Ozay ◽  
...  

In the present study, we aimed to evaluate the anticancer activities of Cetraria islandica (C.islandica) extracts on MCF-7 breast cancer cell lines. Cell viability, protein levels, apoptotic cells number, F-actin distribution were measured. Cell viability of MCF-7 breast cancer cells was found to be reduced in a dose-dependent manner.EC50 values of C.islandica on MCF-7 cells were found to be 9.2047 E-5 g/ml (cell amount) by using intelligence system. Expressions of p53, caspase 3 and Bcl-2, were shown to be elevated after low doses of extract and diminished after high dose treatments. PPAR- protein level was decreased, although AMP-activated kinases-α1 (AMPK-α1) protein level was increasedin its extract groups. ERK1/2 protein level was also elevated in its extract groups. 125 mg/ml of extract treated cells show a low decrease in actin filament density. MCF-7 cells with C.islandica treatment for 24 h increased the apoptotic cell percentage, though the cells-treated with C.islandica for 48 was high necrotic cells percentage. Consequently, the C.islandica extract treatment causes to elevate ERK1/2 and AMPK-α1 protein levels, resulting in PPAR- and then triggers the apoptosis by modulation caspase-3 and P53 protein levels. Therefore, C.islandica might be a good candidate for anticancer tissue, especially soft tissue tumours.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Yan ◽  
Yi Liu ◽  
Xue-feng Ma ◽  
Dan Hou ◽  
Yu-hui Zhang ◽  
...  

Pyroptosis is a form of programmed cell death, in which gasdermin E (GSDME) plays an important role in cancer cells, which can be induced by activated caspase-3 on apoptotic stimulation. Triclabendazole is a new type of imidazole in fluke resistance and has been approved by the FDA for the treatment of fascioliasis and its functions partially acting through apoptosis-related mechanisms. However, it remains unclear whether triclabendazole has obvious anti-cancer effects on breast cancer cells. In this study, to test the function of triclabendazole on breast cancer, we treated breast cancer cells with triclabendazole and found that triclabendazole induced lytic cell death in MCF-7 and MDA-MB-231, and the dying cells became swollen with evident large bubbles, a typical sign of pyroptosis. Triclabendazole activates apoptosis by regulating the apoptoic protein levels including Bax, Bcl-2, and enhanced cleavage of caspase-8/9/3/7 and PARP. In addition, enhanced cleavage of GSDME was also observed, which indicates the secondary necrosis/pyroptosis is further induced by active caspase-3. Consistent with this, triclabendazole-induced GSDME–N-terminal fragment cleavage and pyroptosis were reduced by caspase-3–specific inhibitor (Ac-DEVD-CHO) treatment. Moreover, triclabendazole induced reactive oxygen species (ROS) elevation and increased JNK phosphorylation and lytic cell death, which could be rescued by the ROS scavenger (NAC), suggesting that triclabendazole-induced GSDME-dependent pyroptosis is related to the ROS/JNK/Bax-mitochondrial apoptotic pathway. Besides, we showed that triclabendazole significantly reduced the tumor volume by promoting the cleavage of caspase-3, PARP, and GSDME in the xenograft model. Altogether, our results revealed that triclabendazole induces GSDME-dependent pyroptosis by caspase-3 activation at least partly through augmenting the ROS/JNK/Bax-mitochondrial apoptotic pathway, providing insights into this on-the-market drug in its potential new application in cancer treatment.


2013 ◽  
Vol 91 (6) ◽  
pp. 526-531 ◽  
Author(s):  
Lanlan Wang ◽  
Changjun Wang ◽  
Bingnan Su ◽  
Quansheng Song ◽  
Yingmei Zhang ◽  
...  

Resistance to paclitaxel is common for treatment of breast cancer. Programmed cell death 5 (PDCD5) accelerates apoptosis in different cell types in response to various stimuli; moreover PDCD5 has been shown to be down-regulated in many tumors. In this study, protein levels of PDCD5 were found to be up-regulated in paclitaxel-treated MDA-MB-231 breast cancer cells. MTT, CCK-8, and clonogenic assays have shown that recombinant human PDCD5 (rhPDCD5) alone could not produce an obvious growth inhibition. However, upon paclitaxel triggering apoptosis, rhPDCD5 protein potentiated chemotherapeutic drugs-induced growth arrest in MDA-MB-231, SK-BR-3, and ZR-75-1 breast cancer cells. In vivo, we use a human breast cancer xenograft model to study. We found that rhPDCD5 dramatically improves the antitumor effects of paclitaxel treatment by intraperitoneal administration. These data suggest that rhPDCD5 has the potential to use as a therapeutic agent to enhance the paclitaxel sensitivity of breast cancer cells.


1995 ◽  
Vol 14 (3) ◽  
pp. 391-394 ◽  
Author(s):  
S Y James ◽  
A G Mackay ◽  
K W Colston

ABSTRACT The effects of the novel vitamin D analogue, EB1089 alone, or in combination with the retinoid, 9-cis retinoic acid (9-cis RA) on indices of apoptosis in MCF-7 breast cancer cells have been examined. EB1089 was capable of reducing bcl-2 protein, a suppressor of apoptosis, and increasing p53 protein levels in MCF-7 cell cultures following 96h treatment. In the presence of 9-cis RA, EB1089 acted to further enhance the down-regulation and up-regulation of bcl-2 and p53 respectively. Furthermore, EB1089 induces DNA fragmentation in MCF-7 cells, a key feature of apoptosis, alone and in combination with 9-cis RA in situ. The observation that EB1089 and 9-cis RA act in a cooperative manner to enhance induction of apoptosis in these cells may have therapeutic implications.


2021 ◽  
Vol 17 (8) ◽  
pp. 1545-1553
Author(s):  
Chuanguang Xiao ◽  
Xiaohong Wang ◽  
Jiacheng Shen ◽  
Yanjie Xia ◽  
Shusheng Qiu ◽  
...  

Despite the broad anticancer activity, whereas the clinical application of luteolin is hindered by unsatisfactory water solubility and non-targeting. Herein, targeted inhibitory effects of luteolin-loading HER2 nanospheres (Her-2-NPs) were successfully prepared by thin film ultrasonic method. In comparison with the non-targeted nanospheres, Her-2 nanospheres could significantly boost the intake of luteolin in SK-BR-3 cells. The proliferation and apoptosis of breast cancer cells were detected by MTT testing and flow cytometry examination, respectively. Consequently, the expressions of FOXO1 mRNA level was detected using qPCR assay and protein level was detected using Westernblot. We discovered that Luteolin-loading Her-2 nanospheres could significantly hinder the proliferation of breast cancer cells, down-regulation their migration, and up-regulation FOXO1 expression at mRNA and protein levels, reveal a mechanism whereby luteolin interferes with breast cancer. Collectively, these results suggest Her-2-modified nanospheres increases the efficiency of luteolin uptake and thus improves the treatment benefit of breast cancer.


2020 ◽  
Author(s):  
Shoukai Zong ◽  
Wei Dai ◽  
Wencheng Fang ◽  
Xiangting Guo ◽  
Kai Wang

Abstract Objective This study aimed to investigate the effect of SIK2 on cisplatin resistance induced by aerobic glycolysis in breast cancer cells and its potential mechanism. Methods qRT-PCR and Western blot were used to detect SIK2 mRNA and protein levels. Cisplatin (DDP) resistant cell lines of breast cancer cells were established, CCK-8 was used to measure and evaluate the viability, and Transwell was used to evaluate the cell invasion capability. Flow cytometry was adopted to evaluate the apoptosis rate. The glycolysis level was evaluated by measuring glucose consumption and lactic acid production. The protein levels of p-PI3K, p- protein kinase B (Akt) and p-mTOR were determined by western blot. Results SIK2 is highly expressed in breast cancer tissues and cells compared with adjacent tissues and normal human breast epithelial cells, and has higher diagnostic value for breast cancer. Silencing SIK2 expression can inhibit proliferation and invasion of breast cancer cells and induce their apoptosis. In addition, SIK2 knockdown inhibits glycolysis, reverses the resistance of drug-resistant cells to cisplatin, and inhibits PI3K/AKT/mTOR signaling pathway. When LY294002 is used to inhibit PI3K/AKT/mTOR signaling pathway, the effect of Sh-SIK2 on aerobic glycolysis of breast cancer cells can be reversed. Conclusion SIK2 can promote cisplatin resistance caused by aerobic glycolysis of breast cancer cells through PI3K/AKT/mTOR signaling pathway, which may be a new target to improve cisplatin resistance of breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document