scholarly journals Application of foliar biofertilizers with and without NPK in cultivating white-glutinous corn

2021 ◽  
Vol 2 (2) ◽  
pp. 105-113
Author(s):  
Roselyn R. Adajar ◽  
Erma C. Taer

Organic farming used fermented fruit and plant juices as foliar fertilizers to enhance crop production. However, the usage is usually limited to sole fruit or plant fermentation with chemicals and other growth enhancers. The use of various fruits, plants, fish products, and Cyanobacteria with Mycorrhizal fungi combinations to enhance white-glutinous corn has not yet been explored. This trial investigated the different fermented fruits (FFJ), plants (FPJ), fishes (FAA), and commercial Cyanobacteria with Mycorrhizal fungi (Rhizocote) in single-use or combination with NPK to enhance the growth, yield, and Return on Investment (ROI) of cultivating white-glutinous corn. The application was 2 tbsp L-1 water for single use of fermented biofertilizers while 1 tbsp L-1 water for fermented foliar with NPK combinations. The results showed that the height of corn was not significant among treatments in 30 and 60 days after planting (DAP). However, corn treated with Rhizocote alone was the tallest in 45 DAP and had longer days to reach 50% corn tasseling. White-glutinous corn treated with Rhizocote + NPK had the highest number of ears. The rest of the treatments yielded a comparable number of ear sizes ranging from 1.27 to 1.37 cm. The highest yield of marketable green ears accounted for 7.45 t ha-1 with Rhizocote + NPK, while the lowest was observed when the white-glutinous corn was fertilized alone with FFJ at 2.93 t-ha. The Rhizocote + NPK obtained the highest R.O.I. of 263.68% compared to other treatments. Thus, the recommendation is to use 1.00 tbsp L-1 water commercial Rhizocote + recommended NPK for a productive and profitable white-glutinous corn. More investigation using different agri-fishery products fermentation at higher concentrations are needed in culture of white-glutinous corn for green ear production in various planting season.

2020 ◽  
Vol 12 (12) ◽  
pp. 4859 ◽  
Author(s):  
Monther M. Tahat ◽  
Kholoud M. Alananbeh ◽  
Yahia A. Othman ◽  
Daniel I. Leskovar

A healthy soil acts as a dynamic living system that delivers multiple ecosystem services, such as sustaining water quality and plant productivity, controlling soil nutrient recycling decomposition, and removing greenhouse gases from the atmosphere. Soil health is closely associated with sustainable agriculture, because soil microorganism diversity and activity are the main components of soil health. Agricultural sustainability is defined as the ability of a crop production system to continuously produce food without environmental degradation. Arbuscular mycorrhizal fungi (AMF), cyanobacteria, and beneficial nematodes enhance water use efficiency and nutrient availability to plants, phytohormones production, soil nutrient cycling, and plant resistance to environmental stresses. Farming practices have shown that organic farming and tillage improve soil health by increasing the abundance, diversity, and activity of microorganisms. Conservation tillage can potentially increase grower’s profitability by reducing inputs and labor costs as compared to conventional tillage while organic farming might add extra management costs due to high labor demands for weeding and pest control, and for fertilizer inputs (particularly N-based), which typically have less consistent uniformity and stability than synthetic fertilizers. This review will discuss the external factors controlling the abundance of rhizosphere microbiota and the impact of crop management practices on soil health and their role in sustainable crop production.


2016 ◽  
Vol 1 (90) ◽  
pp. 22-24
Author(s):  
V.F. Kaminskyi ◽  
S.G. Korsun

The aim of this work was to study the basic directions of scientific support introduction of organic farming in Ukraine. The study used methods of comparison, synthesis, analysis, induction and deduction. The article indicated on the main areas that need special attention from researchers and suggests one possible mechanism to remove the remaining obstacles to organizational issue introduction of scientific developments in the production of organic and training areas. This can speed up the creation of new and manage existing land ownership and land use organic farming with the introduction of advanced production technology of organic crop production.


Author(s):  
Peerasak Puengpapat

This research is intended to compare and demonstrate the difference between the cost and benefit of organic farming and chemistry. Compare differences in the quality of yields and minerals in the soil both before and after cultivation and modeling of agribusiness. Using Business Model Canvas for the decision of agricultural entrepreneurs who want to modify the farming process.The research found that in the experiment comparing between the costs of Organic farming and Chemical farming to produce three types of vegetables that are cucumber ,red oak salad and radish, with the total cost of growing vegetables in Organic farming, higher than the total cost of growing vegetables in Chemical farming. There is a greater frequency of fertilizing and injecting Organic matter than chemical farming. The net profit from the sale of vegetables in the Organic agricultural sector is higher than the net profit from the sale of vegetables in the Chemical agricultural sector, as the production price of Organic agricultural sector is higher than the production price of Chemical agricultural sector because the production process of organic farming has a higher production process and requires higher production attention to produce quality, and another factor is that Organic vegetables have a higher production cost than vegetables from chemical farming, resulting in less volume of organic production in the market than vegetables from Chemical agricultural sector. Consumers are demanding more healthy Organic vegetables. As a result, the price of vegetables that produced by Organic agricultural sector is higher than the price of vegetables that produced by Chemical agricultural sector, and the Return on Investment in Organic vegetables is higher than the vegetables that produced by Chemical agricultural .The Return on Investment in production of Organic farming is 61.48% and The Return on Investment in production of Chemical farming is 33.87%. It is therefore possible to conclude that growing vegetables in Organic way is safe for vegetable farmers who do not have to be exposed to any harmful Chemicals, as well as the resulting produce that is safe from residues, allowing consumers to be safe from toxin residues and receive good quality vegetables. Type of Paper: Empirical/Experimental Keywords: Agricultural; Organics; Cost ;Business Model ;Comparison.


2018 ◽  
Vol 74 (1) ◽  
pp. 6049-2018
Author(s):  
Kochanowski M. ◽  
Różycki M. ◽  
Dąbrowska J. ◽  
Bilska-Zając E. ◽  
Karamon J. ◽  
...  

Anisakis simplex is a zoonotic nematode which can cause human anisakiasis. Furthermore, A. simplex allergens, even of dead larvae can cause allergic reactions, including anaphylaxis. Due to the frequent occurrence in fish muscles and pathogenicity, A. simplex is a serious danger for fish products consumers. Therefore, it is necessary to examine fish and fish products for the presence of these parasites before placing on the market. The purpose of this paper is review of methods for A. simplex detection in fish and fishery products. These methods differ according to the effectiveness and type of the target analyte. They also have different suitability for examination of matrices with different properties. Moreover this paper presents legislations associated with A. simplex detection. .


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1078
Author(s):  
Christopher Brock ◽  
Meike Oltmanns ◽  
Christoph Matthes ◽  
Ben Schmehe ◽  
Harald Schaaf ◽  
...  

Mixed-crop-livestock farms offer the best conditions for sustainable nutrient management in organic farming. However, if stocking rates are too low, sustainability might be threatened. Therefore, we studied the development of soil organic matter and nutrients as well as crop yields over the first course of a new long-term field experiment with a mimicked cattle stocking rate of 0.6 LU ha−1, which is the actual average stocking rate for organic farms in Germany. In the experiment, we tested the effects of additional compost application to improve organic matter supply to soils, and further, potassium sulfate fertilization for an improved nutrition of fodder legumes. Compost was made from internal resources of the farm (woody material from hedge-cutting). Soil organic matter and nutrient stocks decreased in the control treatment, even though yield levels, and thus nutrient exports, were comparably low. With compost application, soil organic matter and nutrient exports could be compensated for. At the same time, the yields increased but stayed at a moderate level. Potassium sulfate fertilization further improved N yields. We conclude that compost from internal resources is a viable solution to facilitate sustainable organic crop production at low stocking rates. However, we are aware that this option does not solve the basic problem of open nutrient cycles on the farm gate level.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1011
Author(s):  
Bartłomiej Bajan ◽  
Joanna Łukasiewicz ◽  
Agnieszka Poczta-Wajda ◽  
Walenty Poczta

The projected increase in the world’s population requires an increase in the production of edible energy that would meet the associated increased demand for food. However, food production is strongly dependent on the use of energy, mainly from fossil fuels, the extraction of which requires increasing input due to the depletion of the most easily accessible deposits. According to numerous estimations, the world’s energy production will be dependent on fossil fuels at least to 2050. Therefore, it is vital to increase the energy efficiency of production, including food production. One method to measure energy efficiency is the energy return on investment (EROI), which is the ratio of the amount of energy produced to the amount of energy consumed in the production process. The literature lacks comparable EROI calculations concerning global food production and the existing studies only include crop production. The aim of this study was to calculate the EROI of edible crop and animal production in the long term worldwide and to indicate the relationships resulting from its changes. The research takes into account edible crop and animal production in agriculture and the direct consumption of fossil fuels and electricity. The analysis showed that although the most underdeveloped regions have the highest EROI, the production of edible energy there is usually insufficient to meet the food needs of the population. On the other hand, the lowest EROI was observed in highly developed regions, where production ensures food self-sufficiency. However, the changes that have taken place in Europe since the 1990s indicate an opportunity to simultaneously reduce the direct use of energy in agriculture and increase the production of edible energy, thus improving the EROI.


Author(s):  
З. Фёдорова ◽  
А. Шитикова ◽  
А. Тевченков

Исследования проведены в условиях полевого опыта на дерново-подзолистых супесчаных почвах в 20162017 годах и заключались в выявлении потенциальной урожайности сортов сои северного экотипа и определении эффективности действия ростостимулирующих препаратов в агроклиматических условиях Калужской области. Объектами исследований были сорта сои Магева, Светлая и Касатка. В последнее время в растениеводстве для подавления фитопатогенной микрофлоры доказана возможность применения в низких концентрациях солей серебра. На растениях применяют серебросодержащие препараты коллоидные растворы, содержащие наноразмерные частицы металлического серебра, широкого спектра биологического действия. Регулятор роста Зеребра Агро , применяемый в исследованиях на культуре сои, создан на основе коллоидного серебра. Его положительное действие в первую очередь определяется влиянием ионов серебра на растения за счёт ингибирования отклика клеток на фитогормон этилен, что приводит к соответствующим изменением баланса физиологических процессов. Применение регулятора роста Зеребра Агро для обработки семян и вегетирующих посевов сои позволило увеличить высоту растений в среднем за 2 года на 23 см, площадь листьев в фазу налива семян на 2,78,8 тыс. м2/га, урожайность семян на 0,10,23 т/га, содержание белка на 2,03,7, а содержание жира на 0,10,3 в сравнении с контролем. Показано действие регулятора роста Зеребра Агро на повышение устойчивости растений сои к неблагоприятным факторам внешней среды, болезням, а также на рост и развитие растений, продуктивность сои и качество продукции. The investigation took place in 20162017 on sod-podzolic sandy soil. The goal was to determine a potential productivity of northern soybean varieties and an effectiveness of growth regulators in the Kaluga region. Soybean varieties Mageva, Svetlaya and Kasatka performed as objects of the study. Lately Crop Production showed that low concentrations of Ag salts negatively affect phytopathogenic microflora. Plants get treated by silver-containing preparations colloidal solutions containing Ag nanoparticles of wide spectrum of biological action. Growth regulator Zerebra Agro is based on colloidal silver and used on soybean. Ag slows down plant cell response in the presence of ethylene changing the chain of physiological reactions. Treatments of soybean seeds and plants with Zerebra Agro increased plant height by 23 cm for 2 years, leaf surface at seed formation time by 2.78.8 thousand m2 ha-1, seed yield by 0.10.23 t ha-1, protein content by 2.03.7, fat concentration by 0.10.3. This paper also reports on the effect of Zerebra Agro on soybean resistance to abiotic and biotic stresses as well as plant growth, yield and quality.


2010 ◽  
Vol 25 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Randy L. Anderson

AbstractWeeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in conventional farming has reduced herbicide use by 50% because weed density declines in cropland across time. In this paper, we suggest a 9-year rotation comprised of perennial forages and annual crops that will disrupt weed population growth and reduce weed density in organic systems. Lower weed density will also improve effectiveness of weed control tactics used for an individual crop. The rotation includes 3-year intervals of no-till, which will improve both weed population management and soil health. Even though this rotation has not been field tested, it provides an example of designing rotations to disrupt population dynamics of weeds. Also, producers may gain additional benefits of higher crop yield and increased nitrogen supply with this rotation design.


Sign in / Sign up

Export Citation Format

Share Document