Protective role of interleukin-6 in coagulatory and hemostatic disturbance induced by lipopolysaccharide in mice

2004 ◽  
Vol 91 (06) ◽  
pp. 1194-1201 ◽  
Author(s):  
Ken-ichiro Inoue ◽  
Rie Yanagisawa ◽  
Miho Sakurai ◽  
Akinori Shimada ◽  
Takehito Morita ◽  
...  

SummaryAlthough the role of interleukin (IL)-6 in inflammatory diseases has been previously examined, its role in hemostasis, fibrinolysis, and coagulation during inflammation remains to be established. The present study elucidated the role of IL-6 in hemostatic and coagulatory changes during severe inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS: 1 mg/kg) using IL-6 null (-/-) mice. After LPS challenge, IL-6 (-/-) mice revealed significant prolongation of prothrombin time and activated partial thromboplastin time and a significant decrease in platelet counts as compared with wild type mice. LPS treatment induced marked pulmonary hemorrhage with neutrophilic inflammation in IL-6 (-/-) mice, in contrast, only mild neutrophilic infiltration in WT mice confirmed by macroscopic and histological findings.The protein levels of proinflammatory mediators, such as IL-1?, macrophage inflammatory protein (MIP)-1a., MIP-2, macrophage chemoattractant protein1, granulocyte/macrophage-colony-stimulating factor, and keratinocyte chemoattractant in the lungs were significantly greater in IL-6 (-/-) mice than in WT mice after LPS challenge. These results directly indicate that IL-6 is protective against coagulatory and hemostatic disturbance and subsequent pulmonary hemorrhage induced by bacterial endotoxin, at least partly, via the modulation of proinflammatory processes.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1476 ◽  
Author(s):  
Mojca Trstenjak Prebanda ◽  
Janja Završnik ◽  
Boris Turk ◽  
Nataša Kopitar Jerala

Stefin B (cystatin B) is an intracellular inhibitor of cysteine cathepsins and mutations in the stefin B gene, resulting in the development of Unverricht–Lundborg disease, which is a form of myoclonic epilepsy. It was suggested that a key mechanism behind stefin B-mediated disease progression was impaired redox homeostasis. Stefin B-deficient mice were found more sensitive to lipopolysaccharide (LPS)-induced sepsis as a consequence of increased expression of caspase-11 and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing (NLRP nflammasome activation and higher levels of mitochondrial reactive oxygen species (ROS). In the present study, we investigated if LPS-triggered oxidative stress affected the protein levels and redox status of redox sensitive proteins—thioredoxin, peroxiredoxins, and superoxide dismutases in macrophages and spleens of LPS-injected mice. LPS challenge was found to result in a marked elevation in mitochondrial peroxiredoxin 3 (Prx3), sulfiredoxin, and superoxide dismutase 2 (Sod2) in stefin B-deficient macrophages and spleens. We determined that sulfiredoxin is targeted to mitochondria after LPS challenge. In conclusion, the upregulation of mitochondrial redox-sensitive proteins Prx3 and Sod2 in stefin B-deficient cells implies a protective role of stefin B in mitochondrial function.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ming Liu ◽  
Zikun Xie ◽  
Guang Sun ◽  
Liujun Chen ◽  
Dake Qi ◽  
...  

Abstract Background Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. Methods One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. Results rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10−10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04–0.19 and 4.42–16.82, respectively), but TNF-α and IL-6 became non-significant. Conclusions Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


2007 ◽  
Vol 292 (4) ◽  
pp. L960-L971 ◽  
Author(s):  
Huili Zhang ◽  
Liang Zhi ◽  
Shabbir Moochhala ◽  
Philip K. Moore ◽  
Madhav Bhatia

Recent studies have implied that hydrogen sulfide (H2S) plays a crucial role in several inflammatory conditions. However, so far little is known about the mechanism by which H2S provokes the inflammatory response in sepsis. Thus the aim of this study was to investigate if H2S regulates sepsis-associated systemic inflammation and production of proinflammatory mediators via the activation of NF-κB. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with dl-propargylglycine (PAG; 50 mg/kg ip), NaHS (10 mg/kg ip), or saline. PAG, an inhibitor of H2S formation, was administered either 1 h before or 1 h after CLP, whereas NaHS, an H2S donor, was given at the time of CLP. Some normal mice were given NaHS (10 mg/kg ip) to induce lung inflammation with or without pretreatment with the NF-κB inhibitor BAY 11-7082. Eight hours after CLP, both prophylactic and therapeutic administration of PAG significantly reduced the mRNA and protein levels of IL-1β, IL-6, TNF-α, monocyte chemotactic protein-1, and macrophage inflammatory protein-2 in lung and liver coupled with decreased activation and translocation of NF-κB in lung and liver. Inhibition of H2S formation also significantly reduced lung permeability and plasma alanine aminotransferase activity. In contrast, injection of NaHS significantly aggravated sepsis-associated systemic inflammation and increased NF-κB activation. In addition, H2S-induced lung inflammation was blocked by BAY 11-7082. Therefore, H2S upregulates the production of proinflammatory mediators and exacerbates the systemic inflammation in sepsis through a mechanism involving NF-κB activation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jianlei Zhang ◽  
Wei Liu ◽  
Yabo Wang ◽  
Shengnan Zhao ◽  
Na Chang

miR-135a-5p was reported to play a crucial role in the protective effects of hydrogen sulfide against Parkinson’s disease (PD) by targeting rho-associated protein kinase 2 (ROCK2). However, the role of another member of miR-135 family (miR-135b) and the underlying mechanism in PD are still unclear. qRT-PCR and western blot showed that miR-135 was downregulated and glycogen synthase kinase 3β (GSK3β) was upregulated at mRNA and protein levels in MPP+-intoxicated SH-SY5Y cells in a dose- and time-dependent manner. MTT, TUNEL, and ELISA assays revealed that miR-135b overexpression significantly promoted cell proliferation and inhibited apoptosis and production of TNF-α and IL-1β in SH-SY5Y cells in the presence of MPP+. Luciferase reporter assay demonstrated that GSK3β was a direct target of miR-135b. Moreover, sodium nitroprusside (SNP), a GSK3β activator, dramatically reversed the effects of miR-135b upregulation on cell proliferation, apoptosis, and inflammatory cytokine production in MPP+-intoxicated SH-SY5Y cells. Taken together, miR-135b exerts a protective role via promotion of proliferation and suppression of apoptosis and neuroinflammation by targeting GSK3β in MPP+-intoxicated SH-SY5Y cells, providing a potential therapeutic target for the treatment of PD.


2021 ◽  
Vol 2 ◽  
Author(s):  
Latifa Koussih ◽  
Samira Atoui ◽  
Omar Tliba ◽  
Abdelilah S. Gounni

Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.


2017 ◽  
Author(s):  
Peter Tsvetkov ◽  
Julia Adler ◽  
Yaarit Adamovich ◽  
Gad Asher ◽  
Nina Reuven ◽  
...  

AbstractSilent information regulator 2-related enzyme 1 (SIRT1) is an NAD+-dependent class III deacetylase and a key component of the cellular metabolic sensing pathway. The requirement of NAD+ for SIRT1 activity led us to assume that NQO1, an NADH oxidoreductase producing NAD+, regulates SIRT1 activity. We show here that SIRT1 is capable of increasing NQO1 (NAD(P)H Dehydrogenase Quinone 1) transcription and protein levels. NQO1 physically interacts with SIRT1 but not with an enzymatically dead SIRT1 H363Y mutant. The interaction of NQO1 with SIRT1 is markedly increased under mitochondrial inhibition. Interestingly, under this condition the nuclear pool of NQO1 is elevated. Depletion of NQO1 compromises the role of SIRT1 in inducing transcription of several target genes and eliminates the protective role of SIRT1 following mitochondrial inhibition. Our results suggest that SIRT1 and NQO1 form a regulatory loop where SIRT1 regulates NQO1 expression and NQO1 binds and mediates the protective role of SIRT1 during mitochondrial stress. The interplay between an NADH oxidoreductase enzyme and an NAD+ dependent deacetylase may act as a rheostat in sensing mitochondrial stress.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3455-3464 ◽  
Author(s):  
Richard A. Dean ◽  
Jennifer H. Cox ◽  
Caroline L. Bellac ◽  
Alain Doucet ◽  
Amanda E. Starr ◽  
...  

AbstractThrough the activity of macrophage-specific matrix metalloproteinase-12 (MMP-12), we found that macrophages dampen the lipopolysaccharide (LPS)-induced influx of polymorphonuclear leukocytes (PMNs)—thus providing a new mechanism for the termination of PMN recruitment in acute inflammation. MMP-12 specifically cleaves human ELR+ CXC chemokines (CXCL1, -2, -3, -5, and -8) at E-LR, the critical receptor-binding motif or, for CXCL6, carboxyl-terminal to it. Murine (m) MMP-12 also cleaves mCXCL1, -2, and -3 at E-LR. MMP-12-cleaved mCXCL2 (macrophage-inflammatory protein-2 [MIP-2]) and mCXCL3 (dendritic cell inflammatory protein-1 [DCIP-1]) lost chemotactic activity. Furthermore, MMP-12 processed and inactivated monocyte chemotactic proteins CCL2, -7, -8, and -13 at position 4-5 generating CCR antagonists. Indeed, PMNs and macrophages in bronchoalveolar lavage fluid were significantly increased 72 hours after intranasal instillation of LPS in Mmp12−/− mice compared with wild type. Specificity occurred at 2 levels. Macrophage MMP-1 and MMP-9 did not cleave in the ELR motif. Second, unlike human ELR+CXC chemokines, mCXCL5 (LPS-induced CXC chemokine [LIX]) was not inactivated. Rather, mMMP-12 cleavage at Ser4-Val5 activated the chemokine, promoting enhanced PMN early infiltration in wild-type mice compared with Mmp12−/− mice 8 hours after LPS challenge in air pouches. We propose that the macrophage, specifically through MMP-12, assists in orchestrating the regulation of acute inflammatory responses by precise proteolysis of ELR+CXC and CC chemokines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Tsvetkov ◽  
Julia Adler ◽  
Romano Strobelt ◽  
Yaarit Adamovich ◽  
Gad Asher ◽  
...  

Silent information regulator 2-related enzyme 1 (SIRT1) is an NAD+-dependent class III deacetylase and a key component of the cellular metabolic sensing pathway. The requirement of NAD+ for SIRT1 activity led us to assume that NQO1, an NADH oxidoreductase producing NAD+, regulates SIRT1 activity. We show here that SIRT1 is capable of increasing NQO1 (NAD(P)H Dehydrogenase Quinone 1) transcription and protein levels. NQO1 physically interacts with SIRT1 but not with an enzymatically dead SIRT1 H363Y mutant. The interaction of NQO1 with SIRT1 is markedly increased under mitochondrial inhibition. Interestingly, under this condition the nuclear pool of NQO1 is elevated. Depletion of NQO1 compromises the role of SIRT1 in inducing transcription of several target genes and eliminates the protective role of SIRT1 following mitochondrial inhibition. Our results suggest that SIRT1 and NQO1 form a regulatory loop where SIRT1 regulates NQO1 expression and NQO1 binds and mediates the protective role of SIRT1 during mitochondrial stress. The interplay between an NADH oxidoreductase enzyme and an NAD+ dependent deacetylase may act as a rheostat in sensing mitochondrial stress.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 694-694
Author(s):  
Haifeng Xu ◽  
Victoria A. Ploplis ◽  
David E. Joyce ◽  
Francis J. Castellino

Abstract The formation of FVIIa:TF complex is a main contributor to the coagulopathy associated with acute bacterial infection and sepsis. In this study, the role of FVII has been investigated in a murine model of lethal endotoxemia induced by LPS using genetically altered mice expressing low FVII (FVIItTA/tTA). The results demonstrated that FVIItTA/tTA mice had reduced mortality, coagulation, and inflammatory responses compared to wild-type (WT) mice. The reduced thrombin generation in FVIItTA/tTA mice at early stages of post-LPS challenge correlated with less fibrin formation, which was characterized by diminished fibrin deposition in the liver and lower D-Dimer levels in the plasma. Fibrin deposition at late stages of endotoxemia was, however, similar between WT and FVIItTA/tTA mice. There was an apparent increased activation of the intrinsic coagulation pathway in FVIItTA/tTA mice as exhibited by an increased consumption of FXII and FXI zymogen in blood, which appeared to compensate for the diminished thrombin generation characteristic of the low FVII state. Fibrinolytic potential during endotoxemia remained the same between WT and FVIItTA/tTA mice. Reduced inflammatory responses were prominent in FVIItTA/tTA mice, as demonstrated by lower IL-6, MIP-2, and higher IL-10 plasma protein levels, which correlated with the total RNA expression levels in various tissues as determined by Quantitative RT-PCR. These reduced inflammatory responses could be directly due to less FVIIa:TF:PAR-2 signaling, and/or indirectly by less thrombin:PARs signaling in FVIItTA/tTA mice. Additionally, a slight increase in parenchymal organ bleeding was observed in FVIItTA/tTA mice challenged with LPS. Results from these studies indicate that low FVII benefits survival mainly through attenuation of coagulation and inflammatory responses as the result of potentially less coagulation protease signaling. Protection by mechanisms associated with regulation of fibrin formation appears to be limited to early stages of the disease.


Sign in / Sign up

Export Citation Format

Share Document