scholarly journals Enhancing carrot convective drying combining ethanol and ultrasound as pre-treatments: effect on product structure, quality, energy consumption, drying and rehydration kinetics

Author(s):  
Karoline Costa dos Santos
2021 ◽  
Vol 70 ◽  
pp. 105304 ◽  
Author(s):  
Karoline Costa Santos ◽  
Jaqueline Souza Guedes ◽  
Meliza Lindsay Rojas ◽  
Gisandro Reis Carvalho ◽  
Pedro Esteves Duarte Augusto

2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


2012 ◽  
Vol 30 (11-12) ◽  
pp. 1136-1146 ◽  
Author(s):  
Patrick Perré ◽  
Romain Rémond ◽  
Julien Colin ◽  
Eric Mougel ◽  
Giana Almeida

2020 ◽  
Vol 10 (18) ◽  
pp. 6309
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Mohammad Kaveh ◽  
Muhammad Aziz

In this study, the drying time, effective moisture diffusivity (Deff), specific energy consumption (SEC), and quality (color, shrinkage, and rehydration) of the ultrasound-pretreated (US) carrot slices were compared when dried by hot air drying (HD), microwave drying (MWD), infrared drying (INFD), and hybrid methods of MW–HD and INF–HD. Five mathematical models were considered to describe the drying kinetics in the carrots. The results show that US+MW–HD and INFD were the fastest and the slowest drying techniques compared to the HD technique with a 73% and 23% drying time reduction, respectively. The Deff ranged from 7.12 × 10−9 to 2.78 × 10−8 m2/s. The highest and lowest SECs were 297.29 ± 11.21 and 23.75 ± 2.22 MJ/kg which were observed in the HD and US+MWD, respectively. The color variation indices indicated that the best sample in terms of color stability was the one dried by US+MW–HD with the color variation of 11.02 ± 0.27. The lowest and highest shrinkage values were also observed in the samples dried by US+MWD and HD (31.8 ± 1.1% and 62.23 ± 1.77%), respectively. Samples dried by US+MWD and HD possessed the highest and lowest rehydration, respectively. Although the carrot slices dried at a higher pace by US+MW–HD (compared to US+MWD), the shrinkage and SEC of the samples dried by US+MWD were significantly lower than the US+MW–HD (p < 0.05). Therefore, it can be concluded that the application of the US+MWD method can be considered as a proper alternative for drying the carrot slices when compared to the HD, MWD, INFD, and hybrid methods.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 210 ◽  
Author(s):  
Lisa Yen Wen Chua ◽  
Bee Lin Chua ◽  
Adam Figiel ◽  
Chien Hwa Chong ◽  
Aneta Wojdyło ◽  
...  

Drying is an important process in the preservation of antioxidants in medicinal plants. In this study, leaves of Phyla nodiflora, or commonly known as frog fruit, were dried using convective drying (CD) at 40, 50, and 60 °C; vacuum-microwave drying (VMD) at 6, 9, and 12 W/g; and convective pre-drying followed by vacuum-microwave finish drying (CPD–VMFD) at 50 °C and 9 W/g. Drying kinetics of P. nodiflora leaves was modelled, and the influences of drying methods on the antioxidant activity, total phenolic content, volatile and phytosterol contents, energy consumption, water activity, and color properties were determined. Results showed that drying kinetics was best described by modified Page model. VMD achieved highest drying rate, whereas VMFD considerably reduced the drying time of CD from 240 min to 105 min. CPD–VMFD was the best option to dry P. nodiflora in terms of retaining volatiles and phytosterols, with lower energy consumption than CD. Meanwhile, VMD at 6 W/g produced samples with the highest antioxidant activity with 2,2′-Azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) value of 11.00 and 15.99 µM Trolox/100 g dw, respectively.


2021 ◽  
Vol 13 (6) ◽  
pp. 3437
Author(s):  
Dominik Mierzwa ◽  
Justyna Szadzińska ◽  
Elżbieta Radziejewska-Kubzdela ◽  
Róża Biegańska-Marecik

One of the most important problems of the modern world is food wastage. The issue occurs at every stage of the food chain, requiring new sustainable production and processing technologies. The processing of production waste and making it a wholesome ingredient may be a good opportunity to promote more sustainable development. This study analyzes the process of enrichment of model by-product (irregular potatoes cubes) with a functional compound (ascorbic acid) through vacuum impregnation, with two experiments on variants of the process, standard (VI) and ultrasonic-assisted (UVI). The research covers complete processing, including the stage of preserving impregnated products by convective drying. The analysis includes the impregnation efficiency, drying kinetics, and energy consumption, and selected quality parameters of the material, namely color and water activity. Based on the results, ultrasound increased the impregnation efficiency, but the quantitative effect depends on the application period. Ultrasound had a positive effect on the kinetics and energy consumption of convective drying. Ultrasound did not reduce quality. The proposed technology may be useful during the processing of by-products.


2021 ◽  
Vol 5 ◽  
Author(s):  
Carlos Zambra ◽  
Diógenes Hernández ◽  
Hugo Reyes ◽  
Nicole Riveros ◽  
Roberto Lemus-Mondaca

In this study, Kageneckia oblonga leaves were dried under different drying conditions and techniques [oven drying (NC), vacuum drying (VNC), convective drying (FC), and microwave-assisted convective drying (MWFC)]. Thus, the effect of temperature, vacuum, and microwave on the drying features of K. oblonga leaves was determined. Fick's second law was used to calculate the effective moisture diffusivity that varied from 3.94 to 8.14 × 10−11 m2/s, 1.12 to 1.40 × 10−11 m2/s, 7.83 to 11.36 × 10−11 m2/s, and 6.93 to 16.72 × 10−11 m2/s for NC, VNC, FC, and MWFC methods, respectively. In addition, the Weibull and Midilli–Kucuk models accurately predicted all experimental drying curves of K. oblonga leaves. Regarding the energy consumption and efficiency values for different drying methods of K. oblonga were found to be in the range of 0.20–7.50 kW·h and 0.10–3.70%, respectively. The results showed that MWFC method does not significantly affect the phenolic compounds and could be used for large-scale production of K. oblonga dried leaves.


2021 ◽  
Vol 273 ◽  
pp. 07027
Author(s):  
Igor Korotkiy ◽  
Evgeniy Neverov ◽  
Ludmila Lifentseva ◽  
Alexandr Raschepkin

The work is dedicated to the calculation of energy costs for the realization of the process of convective drying of fruits and berries in a suspended layer. The energy consumption for the fan drive for organizing the air flow, providing the phenomenon of fluidization of fruits and berries, as well as the costs for supplying heat to the dehydration object have been calculated. The energy consumption was determined for various options of energy supply: using a heat pump and due to the operation of thermoelectric heaters (TEH). It is found that the largest proportion of the energy consumption for air circulation organization. It has been established that from the energy point of view, of all the investigated freons, the refrigerant R410 is the most efficient, the total energy consumption for dehydration of 1 kg of irgi berries with it is 7102 kJ, for honeysuckle - 9765 kJ / kg, for lingonberry - 7989 kJ / kg. Comparative analysis revealed that the use of a heat pump installation of convective drying fruits and berries in the fluidized bed reduces the power consumption by an average of 13% in comparison with drying by using heaters to heat the coolant.


2021 ◽  
Vol 295 ◽  
pp. 04004
Author(s):  
Dmitry Budnikov

Currently, the power supply of agricultural enterprises should be designed considering not only the required installed capacity but also the peculiarities of production. Thus, the presence of livestock operations implies waste, the disposal of which entails costs. At the same time, feed preparation, including drying of fodder grain is associated with significant energy costs. Thus, the availability of biogas equipment will allow the synthesis of utilization technologies in the form of processing into biogas and the energy supply of equipment to carry out drying. At the same time, attention should be paid to technologies with reduced energy consumption for technological processes. For example, microwave convective or infrared convective drying of grain. These technologies have a reduced energy consumption for moisture removal, but the installed capacity of the equipment is higher than in traditional technologies. This work is aimed at investigating the ratio of heat and electric energy expended in the process of microwave convective drying and the choice of possible renewable energy sources for the implementation of technological operations. Considering that drying of grain is mainly carried out during the harvesting period before storing, it allows considering energy equipment as a source of thermal energy in the cold period, when drying is not required.


Sign in / Sign up

Export Citation Format

Share Document