Abstract 30: Localized Immune Response to Oxidized Lipids in ABCG1-/- Mice: A New Model for Lipid-Driven Autoimmunity

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Angel Baldan ◽  
Ayelet Gonen ◽  
Christina Choung ◽  
Tyler Marquart ◽  
Xuchu Que ◽  
...  

Many metabolic diseases, including atherosclerosis, type 2 diabetes, pulmonary alveolar proteinosis (PAP), and obesity, have a chronic inflammatory component involving both innate and adaptive immunity. Mice lacking the ATP binding cassette (ABC) transporter ABCG1, develop chronic inflammation in the lungs, associated with lipid accumulation (cholesterol, cholesterol ester, phospholipid, oxidized lipids) and cholesterol crystal deposition, characteristic of atherosclerotic lesions and PAP. Here we demonstrate that specific lipids, likely oxidized (Ox) phospholipids and/or sterols, elicit a lung-specific immune response in Abcg1-/- mice. Loss of ABCG1 results in increased levels of specific oxysterols, phosphatidylcholines and oxidized phospholipids, including 1-palmitoyl-2-(5’-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), in the lungs. Further, we identify a niche-specific increase in natural antibody (NAb)-secreting B-1 B cells in response to this lipid accumulation that is paralleled by increased titers of IgM, IgA and IgG against oxidation specific epitopes such as those on OxLDL and malondialdehyde-modified LDL (MDA-LDL). Finally, we identify a cytokine/chemokine signature in the lungs of Abcg1-/- mice reflective of increased B cell activation, antibody secretion and homing. Collectively, these data demonstrate that the accumulation of lipids in Abcg1-/- mice induces the specific expansion and localization of B-1 B cells, which secrete NAbs that may help protect against the development of atherosclerosis. Indeed, despite chronic lipid accumulation and inflammation, hyperlipidemic mice lacking ABCG1 develop smaller atherosclerotic lesions compared to controls. These data also suggest that Abcg1-/- mice may represent a new model in which to study the protective functions of B-1 B cells/NAbs, and may provide novel targets for pharmacologic intervention and treatment of disease.

2002 ◽  
Vol 195 (8) ◽  
pp. 1079-1085 ◽  
Author(s):  
Elizabeth U. Rudge ◽  
Antony J. Cutler ◽  
Nicholas R. Pritchard ◽  
Kenneth G.C. Smith

Inhibitory receptors CD22, FcγRII (CD32), CD72, and paired immunoglobulin-like receptor (PIR)-B are critically involved in negatively regulating the B cell immune response and in preventing autoimmunity. Here we show that interleukin 4 (IL-4) reduces expression of all four on activated B cells at the level of messenger RNA and protein. This reduced expression is dependent on continuous exposure to IL-4 and is mediated through Stat6. Coligation of FcγRII to the B cell receptor (BCR) via intact IgG increases the B cell activation threshold and suppresses antigen presentation. IL-4 completely abolishes these negative regulatory effects of FcγRII. CD22 coligation with the BCR also suppresses activation — this suppression too is abolished by IL-4. Thus, IL-4 is likely to enhance the B cell immune response by releasing B cells from inhibitory receptor suppression. By this coordinate reduction in expression of inhibitory receptors, and release from CD22 and FcγRII-mediated inhibition, IL-4 is likely to play a role in T cell help of B cells and the development of T helper cell type 2 responses. Conversely, B cell activation in the absence of IL-4 would be more difficult to achieve, contributing to the maintenance of B cell tolerance in the absence of T cell help.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A783-A784
Author(s):  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Tingting Zhong ◽  
Chunshan Jin ◽  
Na Chen ◽  
...  

BackgroundAK119 is an Fc-engineered humanized IgG1 monoclonal antibody targeting human CD73. CD73-extracellular adenosine pathway regulates conversion of pro-inflammatory and immuno-stimulatory extracellular adenosine ATP into immunosuppressive adenosine. CD73 expresses on cancer cells, endothelial cells, fibroblasts, lymphocytes and myeloid cells. CD73 upregulated can be a result of tissue hypoxia,1 epithelial-to-mesenchymal transition,2 inflammation3 and/or cytotoxic stress.4 Also, increasing immune response may lead to faster viral clearance, shorter recovery time, less complications, longer immunity and protection from re-infection. Inhibiting CD73 was reported to evoke B cells activation and shows anti-fibrotic effects. The ability of enhancing immune response provides a potential opportunity to treat COVID-19. Thus, we investigated pharmacological activity of AK119 as an agent treating cancers, COVID-19 and fibrosis.MethodsAK119 inhibition of CD73 enzymatic activity was tested in human PBMCs based assay. The ability of AK119 to enhance B cells immune response was detected by cell-based assay. PBMCs were incubated overnight with APCP (inhibitor of CD73 enzyme acitvity) or AK119, CPI006 or MEDI9447. Flow cytometry analysis was performed with gating on B cells (CD19+CD3-) and MFI and positive percent were reported for antibody staining of CD69 or CD83, as well as HLA-DR and IgM. Enhancement of anti-SARS-CoV-2 antibody production was studied using human CD73 transgenic mouse immunized with SARS-CoV-2 spike protein. The in-vivo activity of AK119 was further studied in bleomycin-induced pulmonary fibrosis model in human CD73 transgenic mouse.ResultsAK119 shows a more potent antigen binding (figure 1) and completely CD73 enzyme inhibition activity (figure 2). AK119 promotes B cell proliferation, and upregulating CD69, CD83, HLA-DR and IgM that are markers of B cell activation (figure 3). B cell activation induced by AK119 is independent of adenosine. AK119 show significantly higher bioactivity to induce B cells activation in comparison with MEDI9447 or CPI006 (figure 4). In human CD73 transgenic mice, AK119 increased secretion of anti-S protein IgG (figure 5). In pulmonary fibrosis mouse model, number of inflammatory cell in broncholveolr lavage fluid of AK119 was significantly decreased, and decreased HYP representing collagen content in lung tissue homogenate of mice was found in both AK119 50 mg/kg and 10 mg/kg group (figure 6).ConclusionsAK119 selectively binds to and inhibits the ectonucleotidase activity of CD73 thus reducing adenosine accumulation. Results from non-clinical pharmacology studies reveal potent bioactivities as well as favorable safety properties of AK119. AK119 is intended for advanced solid tumors, pulmonary fibrosis and therapy of COVID-19.ReferencesBullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL, Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 2016;9(430):ra56.Lupia M, Angiolini F, Bertalot G, Freddi S, Sachsenmeier KF, Chisci E, Kutryb-Zajac B, Confalonieri S, Smolenski RT, Giovannoni R, Colombo N, Bianchi F, Cavallaro U. CD73 regulates stemness and epithelial-Mesenchymal transition in ovarian cancer-initiating cells, Stem Cell Rep 2018;10(4):1412–1425.Reinhardt J, Landsberg J, Schmid-Burgk JL, Ramis BB, Bald T, Glodde N, Lopez-Ramos D, Young A, Ngiow SF, Nettersheim D, Schorle H, Quast T, Kolanus W, Schadendorf D, Long GV, Madore J, Scolyer RA, Ribas A, Smyth MJ, Tumeh PC, Tuting T, Holzel M. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res 2017;77(17):4697–4709.Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F, Semenza GL. Chemotherapy induces enrichment of CD47(+)/CD73(+)/ PDL1(+) immune evasive triple-negative breast cancer cells, Proc Natl Acad Sci USA. 2018;115(6):E1239–E1248.Abstract 750 Figure 1Binding activity of AK119 to human PBMCs. Binding Curve of AK119 to CD73 expressed on (A) CD8+ T cells and (B) CD19+ B cells in human PBMCsAbstract 750 Figure 2Inhibition activity of CD73 on human PBMCs. AK119 Inhibits Enzymatic Activity of CD73 Expressed on human PBMCsAbstract 750 Figure 3Effect of upregulating B cell markers by AK119. AK119 Upregulates (A) CD69, (B) CD83, (C) HLA-DR and (D) IgM Expression on B cellsAbstract 750 Figure 4Stimulation of B cell Proliferation by AK119Abstract 750 Figure 5Therapeutic activity in the COVID-19 mouse model. Serum Concentration of S protein-specific IgG in Mouse Model of COVID-19Abstract 750 Figure 6Therapeutic activity in the asthma mouse model. (A) AK119 relieves the increased airway resistance and restore the lung function. (B) Reduction of the inflammatory cells in BALF by AK119


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Susanne E Mortazavi ◽  
Allan Lugaajju ◽  
Mark Kaddumukasa ◽  
Muyideen Kolapo Tijani ◽  
Fred Kironde ◽  
...  

Abstract Background The dysregulation of B cell activation is prevalent during naturally acquired immunity against malaria. Osteopontin (OPN), a protein produced by various cells including B cells, is a phosphorylated glycoprotein that participates in immune regulation and has been suggested to be involved in the immune response against malaria. Here we studied the longitudinal concentrations of OPN in infants and their mothers living in Uganda, and how OPN concentrations correlated with B cell subsets specific for P. falciparum and B cell activating factor (BAFF). We also investigated the direct effect of OPN on P. falciparum in vitro. Results The OPN concentration was higher in the infants compared to the mothers, and OPN concentration in infants decreased from birth until 9 months. OPN concentration in infants during 9 months were independent of OPN concentrations in corresponding mothers. OPN concentrations in infants were inversely correlated with total atypical memory B cells (MBCs) as well as P. falciparum-specific atypical MBCs. There was a positive correlation between OPN and BAFF concentrations in both mothers and infants. When OPN was added to P. falciparum cultured in vitro, parasitemia was unaffected regardless of OPN concentration. Conclusions The concentrations of OPN in infants were higher and independent of the OPN concentrations in corresponding mothers. In vitro, OPN does not have a direct effect on P. falciparum growth. Our correlation analysis results suggest that OPN could have a role in the B cell immune response and acquisition of natural immunity against malaria.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1480
Author(s):  
Sachiko Hirobe ◽  
Takuto Kawakita ◽  
Taki Yamasaki ◽  
Sayami Ito ◽  
Masashi Tachibana ◽  
...  

In this study, we investigated the mechanism of transcutaneous adjuvant activity of the CpG-oligonucleotide (K3) in mice. Transcutaneous immunization (TCI) with an ovalbumin-loaded self-dissolving microneedle patch (OVA-sdMN) and K3-loaded hydrophilic gel patch (HG) increased OVA-specific Th2- and Th1-type IgG subclass antibody titers more rapidly and strongly than those after only OVA-sdMN administration. However, the antigen-specific proliferation of OVA-specific CD4+ T cells was similar between the OVA-only and the OVA+K3 groups. Population analysis of various immune cells in draining lymph nodes (dLNs) in the primary immune response revealed that the OVA+K3 combination doubled the number of dLN cells, with the most significant increase in B cells. Phenotypic analysis by flow cytometry revealed that B-cell activation and maturation were promoted in the OVA+K3 group, suggesting that direct B-cell activation by K3 largely contributed to the rapid increase in antigen-specific antibody titer in TCI. In the secondary immune response, a significant increase in effector T cells and effector memory T cells, and an increase in memory B cells were observed in the OVA+K3 group compared with that in the OVA-only group. Thus, K3, as a transcutaneous adjuvant, can promote the memory differentiation of T and B cells.


2003 ◽  
Vol 198 (4) ◽  
pp. 591-602 ◽  
Author(s):  
Joerg Rossbacher ◽  
Mark J. Shlomchik

B cells express complement receptors (CRs) that bind activated fragments of C3 and C4. Immunized CR knockout (KO) mice have lower antibody titers and smaller germinal centers (GCs), demonstrating the importance of CR signals for the humoral immune response. CR ligands were thought to be generated via complement fixation mediated by preexisting “natural” IgM or early Ab from inefficiently activated B cells. This concept was recently challenged by a transgenic (Tg) mouse model that lacks circulating antibody but still retains membrane IgM (mIgM) and mounts normal immune responses. To test whether CR ligands could be generated by the B cell receptor (BCR) itself, we generated similar mice carrying a mutated mIgM that was defective in C1q binding. We found that B cells from such mutant mice do not deposit C3 on B cells upon BCR ligation, in contrast to B cells from mIgM mice. This has implications for the immune response: the mutant mice have smaller GCs than mIgM mice, and they are particularly deficient in the maintenance of the GC response. These results demonstrate a new BCR-dependent pathway that is sufficient and perhaps necessary to provide a CR1/2 ligand that promotes efficient B cell activation.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarabjot Pabla ◽  
R. J. Seager ◽  
Erik Van Roey ◽  
Shuang Gao ◽  
Carrie Hoefer ◽  
...  

Abstract Background Contemporary to the rapidly evolving landscape of cancer immunotherapy is the equally changing understanding of immune tumor microenvironments (TMEs) which is crucial to the success of these therapies. Their reliance on a robust host immune response necessitates clinical grade measurements of immune TMEs at diagnosis. In this study, we describe a stable tumor immunogenic profile describing immune TMEs in multiple tumor types with ability to predict clinical benefit from immune checkpoint inhibitors (ICIs). Methods A tumor immunogenic signature (TIGS) was derived from targeted RNA-sequencing (RNA-seq) and gene expression analysis of 1323 clinical solid tumor cases spanning 35 histologies using unsupervised analysis. TIGS correlation with ICI response and survival was assessed in a retrospective cohort of NSCLC, melanoma and RCC tumor blocks, alone and combined with TMB, PD-L1 IHC and cell proliferation biomarkers. Results Unsupervised clustering of RNA-seq profiles uncovered a 161 gene signature where T cell and B cell activation, IFNg, chemokine, cytokine and interleukin pathways are over-represented. Mean expression of these genes produced three distinct TIGS score categories: strong (n = 384/1323; 29.02%), moderate (n = 354/1323; 26.76%), and weak (n = 585/1323; 44.22%). Strong TIGS tumors presented an improved ICI response rate of 37% (30/81); with highest response rate advantage occurring in NSCLC (ORR = 36.6%; 16/44; p = 0.051). Similarly, overall survival for strong TIGS tumors trended upward (median = 25 months; p = 0.19). Integrating the TIGS score categories with neoplastic influence quantified via cell proliferation showed highly proliferative and strong TIGS tumors correlate with significantly higher ICI ORR than poorly proliferative and weak TIGS tumors [14.28%; p = 0.0006]. Importantly, we noted that strong TIGS and highly [median = not achieved; p = 0.025] or moderately [median = 16.2 months; p = 0.025] proliferative tumors had significantly better survival compared to weak TIGS, highly proliferative tumors [median = 7.03 months]. Importantly, TIGS discriminates subpopulations of potential ICI responders that were considered negative for response by TMB and PD-L1. Conclusions TIGS is a comprehensive and informative measurement of immune TME that effectively characterizes host immune response to ICIs in multiple tumors. The results indicate that when combined with PD-L1, TMB and cell proliferation, TIGS provides greater context of both immune and neoplastic influences on the TME for implementation into clinical practice.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 422.1-422
Author(s):  
M. Volkov ◽  
A. S. B. Kampstra ◽  
K. van Schie ◽  
J. Kwekkeboom ◽  
T. Huizinga ◽  
...  

Background:Rheumatoid arthritis (RA) is characterized by autoantibodies against post-translationally modified proteins (AMPA) such as citrullinated, carbamylated and acetylated proteins. Importantly, these antibodies are highly multireactive, as they often recognize more than one of these post-translational modifications. Despite extensive research, the antigens inducing the breach of tolerance remain unknown, although microbial antigens are often suspected. Various bacteria are known to be capable of acetylation, therefore, it is intriguing to know what mechanisms can underlie the breach of tolerance towards acetylated proteins and development of anti-acetylated protein antibodies (AAPA).Objectives:To investigate whether acetylated proteins of bacterial origin (1) are recognized by human derived AMPA and AMPA expressing B cells; and (2) can induce AMPA development when used to immunize mice.Methods:Acetylated E. coli proteins were acquired with two separate methods (Figure 1A): by culturing E. coli in a condition promoting auto-acetylation (intrinsically acetylated bacterial proteins, IABP), or by directly acetylating lysate-derived proteins via a chemical reaction (extrinsically acetylated BP, EABP). Acetylated ovalbumin (AcOVA) served as positive control for AAPA induction in mice, non-acetylated BP (NABP) and phosphate buffer saline (PBS) served as negative control. Mice were immunized with these proteins and the resulting antibody response was studied by ELISA. Furthermore, EABP/IABP/NABP were investigated for recognition by human-derived AAPA with ELISA and AAPA-expressing B cells with spleen tyrosine kinase (Syk) phosphorylation assay; acetylated human fibrinogen and native fibrinogen served as positive and negative control.Results:Repetitive immunization of mice with EABP resulted in an AMPA response recognizing acetylated, carbamylated and citrullinated proteins. AMPA titers in these mice exceeded the titers in the positive control mice immunized with AcOVA and were substantially higher than in the NABP-immunized mice (Figure 1B). Human-derived monoclonal AAPA recognized EABP and IABP (not shown). B cell activation (measured by Syk phosphorylation) assay indicated that AAPA expressing B cells recognized EABP and (to a lesser extent) IABP, but not NABP (Figure 1C).Conclusion:Acetylated bacterial proteins are potent antigens that can induce cross-reactive AMPA responses in mice and they are recognized by human AAPA. This suggests that acetylated bacterial proteins could possibly be involved in the breach of tolerance in RA.Acknowledgements:We thank Dr. Can Araman and Prof. Chunaram Choudhary for their advice regarding optimization of bacterial auto-acetylation.Disclosure of Interests:None declared


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


Sign in / Sign up

Export Citation Format

Share Document