Abstract 613: A Mass Spectrometric Analysis Of Embryonic Zebrafish Proteins

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Margaret B Lucitt ◽  
Tom S Price ◽  
Angel Pizarro ◽  
Weichen Wu ◽  
Anastasia Yocum Yocum ◽  
...  

Zebrafish is an attractive vertebrate model organism for studies into the molecular mechanisms of cardiovascular development, pathology and pharmacology. Studies into the genetics of protein expression are largely constrained by the availability of specific antibodies. Mass spectrometry based proteomics methods have the potential to overcome these hurdles. This requires firstly an accurate characterization of proteins accessible to targeted quantitative analysis. We applied mass spectrometric proteomic methodology and statistical analysis to create profiles of proteins expressed during zebrafish embryonic development. We detected 1307 proteins from 327,906 peptide sequence identifications at 72 hpf and 120 hpf with false identification rates of less than 1% using two dimensional chromatography tandem mass spectrometry. Close to two thirds of all detected proteins were derived from hypothetical or predicted gene models or were entirely unannotated. Comparison of protein expression in embryos by two dimensional gel electrophoresis differential in gel analysis (DIGE) revealed that proteins involved in energy production and transcription/ translation were relatively more abundant at 72 hpf consistent with the faster synthesis of cellular proteins during organismal growth. Pathway analysis revealed similar expression of proteins at both stages that relate to calcium, insulin receptor, ERK/MAP kinase, vascular epithelial growth factor signaling, and WNT/b-Catenin. Similarly both stages expressed proteins of the complement and coagulation cascades, GM-CSF, PTEN, and sonic hedgehog signaling and inflammatory signals. The data are accessible in a fully searchable database (http://bioinf.itmat.upenn.edu/zebrafish) that links protein identifications to existing resources including the Zebrafish Model Organism Database. This new resource should facilitate the selection of candidate proteins for targeted quantitation and may refine systematic genetic network analysis in vertebrate development and biology. This is the first large-scale proteome analysis of embryonic zebrafish tissue to reveal previously uncharacterized proteins and detect regulated proteins with relevance for cardiovascular function and development.

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Yulanda M. Williamson ◽  
Hercules Moura ◽  
David Schieltz ◽  
Jon Rees ◽  
Adrian R. Woolfitt ◽  
...  

Bordetella pertussis(Bp) is the causative agent of pertussis, a vaccine preventable disease occurring primarily in children. In recent years, there has been increased reporting of pertussis. Current pertussis vaccines are acellular and consist of Bp proteins including the major virulence factor pertussis toxin (Ptx), a 5-subunit exotoxin. Variation in Ptx subunit amino acid (AA) sequence could possibly affect the immune response. A blind comparative mass spectrometric (MS) analysis of commercially available Ptx as well as the chemically modified toxoid (Ptxd) from licensed vaccines was performed to assess peptide sequence and AA coverage variability as well as relative amounts of Ptx subunits. Qualitatively, there are similarities among the various sources based on AA percent coverages and MS/MS fragmentation profiles. Additionally, based on a label-free mass spectrometry-based quantification method there is differential relative abundance of the subunits among the sources.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3728
Author(s):  
Taran Driver ◽  
Nikhil Bachhawat ◽  
Leszek J. Frasinski ◽  
Jonathan P. Marangos ◽  
Vitali Averbukh ◽  
...  

The rate of successful identification of peptide sequences by tandem mass spectrometry (MS/MS) is adversely affected by the common occurrence of co-isolation and co-fragmentation of two or more isobaric or isomeric parent ions. This results in so-called `chimera spectra’, which feature peaks of the fragment ions from more than a single precursor ion. The totality of the fragment ion peaks in chimera spectra cannot be assigned to a single peptide sequence, which contradicts a fundamental assumption of the standard automated MS/MS spectra analysis tools, such as protein database search engines. This calls for a diagnostic method able to identify chimera spectra to single out the cases where this assumption is not valid. Here, we demonstrate that, within the recently developed two-dimensional partial covariance mass spectrometry (2D-PC-MS), it is possible to reliably identify chimera spectra directly from the two-dimensional fragment ion spectrum, irrespective of whether the co-isolated peptide ions are isobaric up to a finite mass accuracy or isomeric. We introduce ‘3-57 chimera tag’ technique for chimera spectrum diagnostics based on 2D-PC-MS and perform numerical simulations to examine its efficiency. We experimentally demonstrate the detection of a mixture of two isomeric parent ions, even under conditions when one isomeric peptide is at one five-hundredth of the molar concentration of the second isomer.


2015 ◽  
Vol 7 (23) ◽  
pp. 9808-9816 ◽  
Author(s):  
Steven L. Reeber ◽  
Sneha Gadi ◽  
Sung-Ben Huang ◽  
Gary L. Glish

Paper spray ionization enables the rapid mass spectrometric analysis of environmental samples without the use of chromatography or sample cleanup techniques.


2020 ◽  
Author(s):  
Simon Ngao Mule ◽  
Andrè Guillherme da Costa Martins ◽  
Livia Rosa-Fernandes ◽  
Gilberto Santos de Oliveira ◽  
Carla Monadeli Rodrigues ◽  
...  

AbstractThe etiological agent of Chagas disease, Trypanosoma cruzi, is subdivided into seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution justifies the concerted efforts towards understanding the population structure of T. cruzi strains. In this study, we introduce a novel approach termed ‘phyloquant’ to infer the evolutionary relationships and assignment of T. cruzi strains to their DTUs based on differential protein expression profiles evidenced by bottom up large scale mass spectrometry-based quantitative proteomic features. Mass spectrometry features analyzed using parsimony (MS1, iBAQ and LFQ) showed a close correlation between protein expression and T. cruzi DTUs and closely related trypanosome species. Although alternative topologies with minor differences between the three MS features analyzed were demonstrated, we show congruence to well accepted evolutionary relationships of T. cruzi DTUs; in all analyses TcI and Tcbat were sister groups, and the parental nature of genotype TcII and the hybrid genotypes TcV/TcVI were corroborated. Character mapping of genetic distance matrices based on phylogenetics and phyloquant clustering showed statistically significant correlations. We propose the first quantitative shotgun proteomics approach as a complement strategy to the genetic-based assignment of T. cruzi strains to DTUs and evolutionary inferences. Moreover, this approach allows for the identification of differentially regulated and strain/DTU/species-specific proteins, with potential application in the identification of strain/DTU specific biomarkers and candidate therapeutic targets. In addition, the correlation between multi-gene protein expression and divergence of trypanosome species was evaluated, adding another level to understand the genetic subdivisions among T. cruzi DTUs.


2013 ◽  
pp. 964-985
Author(s):  
Jun-Ichi Satoh

TAR DNA-binding protein-43 (TDP-43) is an evolutionarily conserved nuclear protein that regulates gene expression by forming a multimolecular complex with a wide variety of target RNAs and interacting proteins. Abnormally phosphorylated, ubiquitinated, and aggregated TDP-43 proteins constitute a principal component of neuronal and glial cytoplasmic and nuclear inclusions in the brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), establishing a novel clinical entity designated TDP-43 proteinopathy. Although increasing evidence suggests that the neurodegenerative process underlying ALS and FTLD is attributable to a toxic gain of function or a loss of cellular function of TDP-43, the precise molecular mechanisms remain largely unknown. Recent advances in systems biology enable us to characterize the global molecular network extracted from large-scale data of the genome, transcriptome, and proteome with the pathway analysis tools of bioinformatics endowed with a comprehensive knowledge base. The present study was conducted to characterize the comprehensive molecular network of TDP-43 target RNAs and interacting proteins, recently identified by deep sequencing with next-generation sequencers and mass spectrometric analysis. The results propose the systems biological view that TDP-43 serves as a molecular coordinator of the RNA-dependent regulation of gene transcription and translation pivotal for performing diverse neuronal functions and that the disruption of TDP-43-mediated molecular coordination induces neurodegeneration in ALS and FTLD.


Sign in / Sign up

Export Citation Format

Share Document