Abstract 5423: rAAV-Mediated Gene Therapy with Inducible Nitric Oxide Synthase (iNOS) Affords Permanent Cardioprotection (1 Year) without Adverse Functional Consequences

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Qianhong Li ◽  
Yiru Guo ◽  
Wen-Jian Wu ◽  
Qinghui Ou ◽  
Santosh K Sanganalmath ◽  
...  

The ultimate goal of prophylactic gene therapy is to confer permanent protection against ischemia. Although gene therapy with iNOS is known to protect against myocardial infarction at 3 days and up to 2 months, the long-term effects of iNOS gene therapy on myocardial ischemic injury and function are unknown. To address this issue, we created a recombinant adeno-associated viral vector carrying the iNOS gene (rAAV/iNOS) which enables long-lasting transgene expression. Mice received injections in anterior LV wall of rAAV/LacZ or rAAV/iNOS; 1 year later, they underwent a 30-min coronary occlusion (O) and 4 h of reperfusion (R). iNOS gene transfer resulted in elevated iNOS protein expression (+ 2.9-fold vs. LacZ group, n=6, P<0.05; Fig ) and iNOS activity (+ 3.3-fold vs. LacZ group, n=4, P<0.05) 1 year later. Infarct size (% of risk region) was dramatically reduced at 1 year after iNOS gene transfer (13.5+/−2.2%, n=12, vs. 42.9+/−2.6%, n=12, in LacZ group; Fig ). The infarct-sparing effects of iNOS gene therapy at 1 year were as powerful as those observed 24 h after ischemic PC (six 4-min O/4-min R cycles) (16.3+/−2.3%, n=8; Fig ). Importantly, compared with the LacZ group (n=11), iNOS gene transfer (n=10) had no effect on LV dimensions or function for up to 1 year (at 1 year: LVEDD 4.4+/−0.1 vs. 4.2+/−0.2 mm; LVESD 2.9+/−0.1 vs. 2.9+/−0.2 mm; FS 34+/−1.8 vs. 32+/−2.6%; EF 56+/−2.3 vs. 60+/−2.9%) (echocardiography). These data demonstrate, for the first time, that rAAV-mediated iNOS gene transfer affords long-term, probably permanent (1 year) cardioprotection without adverse functional consequences, providing a strong rationale for further preclinical testing of prophylactic gene therapy.

2006 ◽  
Vol 290 (2) ◽  
pp. H584-H589 ◽  
Author(s):  
Qianhong Li ◽  
Yiru Guo ◽  
Wei Tan ◽  
Adam B. Stein ◽  
Buddhadeb Dawn ◽  
...  

Previous studies have shown that gene therapy with inducible nitric oxide synthase (iNOS) protects against myocardial infarction at 3 days after gene transfer. However, the long-term effects of iNOS gene therapy on myocardial ischemic injury and cardiac function are unknown. To address this issue, we used a recombinant adenovirus 5 (Ad5) vector (Av3) with deletions of the E1, E2a, and E3 regions, which enables long-lasting recombinant gene expression for at least 2 mo due to lack of inflammation. Mice received intramyocardial injections in the left ventricular (LV) anterior wall of Av3/LacZ (LacZ group) or Av3/iNOS (iNOS group); 1 or 2 mo later, they were subjected to myocardial infarction (30-min coronary occlusion followed by 4 h of reperfusion). Cardiac iNOS gene expression was confirmed by immunoblotting and activity assays at 1 and 2 mo after gene transfer. In the iNOS group, infarct size (percentage of risk region) was significantly reduced ( P < 0.05) both at 1 mo (24.2 ± 3.4%, n = 6, vs. 48.0 ± 3.6%, n = 8, in the LacZ group) and at 2 mo (23.4 ± 3.1%, n = 8, vs. 36.6 ± 2.4%, n = 7). The infarct-sparing effects of iNOS gene therapy were as powerful as those observed 24 h after ischemic preconditioning (23.1 ± 3.4%, n = 10). iNOS gene transfer had no effect on LV function or dimensions up to 8 wk later (echocardiography). These data demonstrate that iNOS gene therapy mediated by the Av3 vector affords long-term (2 mo) cardioprotection without inflammation or adverse functional consequences, a finding that provides a rationale for further preclinical testing of this therapy.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1106
Author(s):  
Altar M. Munis

Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.


Blood ◽  
2013 ◽  
Vol 122 (9) ◽  
pp. 1556-1564 ◽  
Author(s):  
Arthur W. Nienhuis

Abstract This review addresses the current status of gene therapy for immunodeficiencies, chronic granulomatous disease, suicide gene therapy for graft-versus-host disease, viral infections, malignant hematologic disorders, hemophilia, and the hemoglobin disorders. New developments in vector design have fostered improved expression as well as enhanced safety, particularly of integrating retroviral vectors. Several immunodeficiencies have been treated successfully by stem cell–targeted, retroviral-mediated gene transfer with reconstitution of the immune system following infusion of the transduced cells. In a trial for hemophilia B, long-term expression of human FIX has been observed following adeno-associated viral vector–mediated gene transfer into the liver. This approach should be successful in treating any disorder in which liver production of a specific protein is therapeutic.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Aline M De Souza ◽  
Jonathas Almeida ◽  
Nataliia Shults ◽  
Hong Ji ◽  
Kathryn Sandberg

Severe caloric restriction (sCR) increases the risk for acute cardiovascular disease. Less understood are the long-term effects on cardiovascular disease risk after the sCR period has ended. We investigated the effects of sCR on heart structure and function months after refeeding (sCR-Refed). Female Fischer rats (3-months-old) were maintained on (CT) ad libitum or a 60% caloric restricted diet for 2 weeks. Thereafter, all rats received ad libitum chow for 3 months and they were analyzed by precision ultrasound to assess their heart function. After imaging, the animals were sacrificed and the hearts were subjected to ischemia-reperfusion (I/R) using a Langendorff preparation. After 2 weeks of sCR, rats lost 15% of their initial body weight (BW) [% (100*(Final-Initial/Initial)): CT, 1.5±0.8 vs sCR, -15.4±1.1; p<0.001;n=8]. After 3 months of refeeding, there was no detectable difference in BW between CT and sFR-Refed groups. Isolated hearts from the sCR-Refed rats exhibited worse myocardial pathology after I/R compared to CT rats. The parallel orientation of myofibers and striations normally present in cardiomyocytes was lost in sCR-Refed rats. Further analysis revealed uneven blood-filling of the microcirculatory vessels and prominent interstitial edema of the myocardium. Hearts from sCR-Refed rats had more atrophied cardiomyocytes than CT [Atrophied/Total (%): CT, 0.2±0.1 vs sCR-Refed, 50.6±1.1; p<0.001; n=5]. The number of arrhythmic events during a 30 min ischemic interval in isolated hearts doubled after 2 weeks on the sCR diet ( data not shown ) and remained doubled 3 months later [Arrhythmias (% of time): CT, 34±8 vs sCR-Refed, 68±9; p=0.02; n=8]. Ultrasound imaging showed no difference in stroke volume, coronary perfusion pressure and left ventricular mass. However, the thickness of the left ventricular posterior wall was significantly reduced in sCR-Refed rats [(mm): CT, 2.55 ±0.03 vs sCR-Refed, 2.10±0.04; p=0.002; n=4]. These findings indicate heart structure and function remained damaged months after the sCR period ended and BW was restored. These studies have adverse cardiovascular risk implications for who are subjected either voluntarily (crash diets) or involuntarily (very low food security) to periods of inadequate caloric intake.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3414-3422 ◽  
Author(s):  
Harry Raftopoulos ◽  
Maureen Ward ◽  
Philippe Leboulch ◽  
Arthur Bank

Abstract Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human β-globin gene in animal models. We have used a β-globin gene/β-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of β-globin–transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human β-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human β-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine β-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human β-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human β-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the β thalassemias.


Sign in / Sign up

Export Citation Format

Share Document