Abstract 14148: Local Aldosterone Production via StAR in PAH and in Human IPS Cell-derived Cardiomyocytes: Efficacy of Spironolactone in Cardiac Remodeling and Mitochondrial Dynamics Under Hypoxic Stress

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Itsumi Murai ◽  
Anyu Kaiami ◽  
Ryuji Kato ◽  
Hideki Imano ◽  
Hirofumi Morihara ◽  
...  

Objective: Pulmonary arterial hypertension (PAH) is a progressive disease that frequently leads to right ventricular (RV) remodeling. Increased plasma aldosterone levels have been reported in patients with PAH. The aim of this study was to examine the expression of steroidogenic acute regulatory protein (StAR) in patients and animal model of PAH, and in the human iPS cell-derived cardiomyocytes (hiPSC-CMs). Furthermore, we evaluated therapeutic effects of mineralocorticoid receptor (MR) antagonist, spironolactone (SPL) on mitochondrial dynamics in the RV myocardium. Methods: Autopsied heart samples (n=20) were obtained from patients with or without PAH. PAH model rats (n=46) were injected with Sugen5416 (20 mg/kg) and then exposed to hypoxia and reoxygenation for 4 weeks with/without treatment with SPL (25 mg/kg/day). Human umbilical vein endothelial cells (HUVECs) and hiPSC-CMs were cultured under hypoxic conditions (37 °C, 1% O 2 , 5% CO 2 ) with/without treatment with SPL (10 μM). In addition, we applied the Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) technology and repressed StAR gene expression in hiPSC-CMs under hypoxic conditions. Results: In PAH patients, the expression of StAR and MR was significantly increased in cardiomyocytes and endothelial cells in the RV myocardium. In PAH rats, RV systolic pressure elevated over 60 mm Hg with deteriorated RV function. Under electron microscopy, severe degeneration of mitochondria and capillaries with myofibrillar lysis in the RV myocardium were observed, which were compatible with those findings in PAH patients. Hypoxic stress significantly increased the StAR and phosphorylated JNK, ERK-1/2, and NF-kB proteins in hiPSC-CMs as well as in HUVECs. Furthermore, we established the CRISPRi-hiPSC cell lines where StAR gene was successfully knockdown. Treatment with SPL decreased the phosphorylation of JNK, ERK-1/2, NF-kB, and Smad3 in HUVECs and hiPSC-CMs. Strikingly, SPL attenuated mitochondrial degeneration and increased mitophagy, suppressing the RV remodeling under hypoxic stress. Conclusion: SPL might regulate mitochondrial dynamics and attenuates RV remodeling in PAH via StAR/JNK signaling pathway.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Oliver ◽  
S.F Rocha ◽  
M Spaczynska ◽  
D.V Lalama ◽  
M Gomez ◽  
...  

Abstract Background Endothelial dysfunction is one of the most important hallmarks of pulmonary arterial hypertension (PAH). This leads to anomalous production of vasoactive mediators that are responsible for a higher vascular tone and a subsequent increase in pulmonary artery pressure (PAP), and to an increased vascular permeability that favors perivascular inflammation and remodeling, thus worsening the disease. Therefore, preservation of the endothelial barrier could become a relevant therapeutic strategy. Purpose In previous studies, others and we have suggested the pharmacological activation of the β3-adrenergic receptor (AR) as a potential therapeutic strategy for pulmonary hypertension (PH) due to left heart disease. However, its potential use in other forms of PH remain unclear. The aim of the present study was to elucidate whether the β3-AR agonist mirabegron could preserve pulmonary endothelium function and be a potential new therapy in PAH. Methods For this purpose, we have evaluated the effect of mirabegron (2 and 10 mg/kg·day) in different animal models, including the monocrotaline and the hypoxia-induced PAH models in rats and mice, respectively. Additionally, we have used a transgenic mouse model with endothelial overexpression of human β3-AR in a knockout background, and performed in vitro experiments with human pulmonary artery endothelial cells (HPAECs) for mechanistic experiments. Results Our results show a dose dependent effect of mirabegron in reducing mean PAP and Right Ventricular Systolic Pressure in both mice and rats. In addition, the use of transgenic mice has allowed us to determine that pulmonary endothelial cells are key mediators of the beneficial role of β3-AR pathway in ameliorating PAH. Mechanistically, we have shown in vitro that activation of β3-AR with mirabegron protects HPAECs from hypoxia-induced ROS production and mitochondrial fragmentation by restoring mitochondrial fission/fusion dynamics. Conclusions This protective effect of mirabegron would lead to endothelium integrity and preserved pulmonary endothelial function, which are necessary for a correct vasodilation, avoiding increased permeability and remodeling. Altogether, the current study demonstrates a beneficial effect of the β3-AR agonist mirabegron that could open new therapeutic avenues in PAH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Programa de Atracciόn de Talento, Comunidad de Madrid


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Yi Zeng ◽  
Qi Pan ◽  
Xiaoxia Wang ◽  
Dongxiao Li ◽  
Yajun Lin ◽  
...  

Much evidence demonstrates that mitochondrial dysfunction plays a crucial role in the pathogenesis of vascular complications of diabetes. However, the signaling pathways through which hyperglycemia leads to mitochondrial dysfunction of endothelial cells are not fully understood. Here, we treated human umbilical vein endothelial cells (HUVECs) with high glucose and examined the role of translocase of mitochondrial outer membrane (Tom) 22 on mitochondrial dynamics and cellular function. Impaired Tom22 expression and protein expression of oxidative phosphorylation (OXPHOS) as well as decreased mitochondrial fusion were observed in HUVECs treated with high glucose. The deletion of Tom22 resulted in reduced mitochondrial fusion and ATP production and increased apoptosis in HUVECs. The overexpression of Tom22 restored the balance of mitochondrial dynamics and OXPHOS disrupted by high glucose. Importantly, we found that Tom22 modulates mitochondrial dynamics and OXPHOS by interacting with mitofusin (Mfn) 1. Taken together, our findings demonstrate for the first time that Tom22 is a novel regulator of both mitochondrial dynamics and bioenergetic function and contributes to cell survival following high-glucose exposure.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yoon Hee Cho ◽  
Cheol Ryong Ku ◽  
Zhen-Yu Hong ◽  
Ji Hoe Heo ◽  
Eun Hee Kim ◽  
...  

Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs). Rat vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) were treated with DE. To evaluate the effects of DEin vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD) rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in bothin vivoandex vivoconditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced byκ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in bothin vitroandin vivoconditions.


2020 ◽  
Author(s):  
Jesus Maria Sierra-Parraga ◽  
Ana Merino ◽  
Marco Eijken ◽  
Henri Leuvenink ◽  
Rutger J. Ploeg ◽  
...  

Abstract Background The renal endothelium is a prime target for ischemia reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved. Methods Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-a treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome deficient MSC. Results MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI.


1994 ◽  
Vol 267 (3) ◽  
pp. H874-H879 ◽  
Author(s):  
A. Pietersma ◽  
N. De Jong ◽  
J. F. Koster ◽  
W. Sluiter

The objective of this study was to investigate the effect of hypoxia on the adhesiveness of endothelial cells for granulocytes. Human umbilical vein endothelial cells (HUVEC) were exposed to a PO2 of 7.5 mmHg (1.0 kPa), and the adherence of granulocytes was assessed under continuous hypoxia by means of a hypoxic incubator room. After 2 h of hypoxia the adherence of granulocytes decreased to 50% of the normoxic control, which was not due to a decreased viability of the endothelial cells nor to an increased generation of the antiadhesive factors nitric oxide, prostacyclin, and adenosine. Hypoxia also had no effect on the expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 on the endothelium. Although the mechanism of the action of hypoxia on the adhesiveness of endothelial cells remains unclear as yet, our data suggest that HUVEC possess a protective mechanism that prevents granulocyte adherence to endothelial cells under extreme hypoxic conditions. The decreased adherence seems paradoxical to the in vivo situation for which the increased margination of granulocytes within the vascular compartment of the ischemic tissue has been observed. However, hypoxia did not impair the potential adhesiveness of HUVEC, since stimulation of endothelial cells under hypoxic conditions with calcium ionophore or lipopolysaccharide increased the adherence of granulocytes in a similar fashion as under normoxic conditions. We therefore conclude that the increased margination of granulocytes during ischemia may be accomplished by the additional stimulation of hypoxic endothelial cells.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 532 ◽  
Author(s):  
Elita Montanari ◽  
Chiara Di Meo ◽  
Tommasina Coviello ◽  
Virginie Gueguen ◽  
Graciela Pavon-Djavid ◽  
...  

Natural antioxidants, such as astaxanthin (AX), resveratrol (RV) and curcumin (CU), are bioactive molecules that show a number of therapeutic effects. However, their applications are remarkably limited by their poor water solubility, physico-chemical instability and low bioavailability. In the present work, it is shown that self-assembled hyaluronan (HA)-based nanohydrogels (NHs) are taken up by endothelial cells (Human Umbilical Vein Endothelial Cells, HUVECs), preferentially accumulating in the perinuclear area of oxidatively stressed HUVECs, as evidenced by flow cytometry and confocal microscopy analyses. Furthermore, NHs are able to physically entrap and to significantly enhance the apparent water solubility of AX, RV and CU in aqueous media. AX/NHs, RV/NHs and CU/NHs systems showed good hydrodynamic diameters (287, 214 and 267 nm, respectively), suitable ζ-potential values (−45, −43 and −37 mV, respectively) and the capability to neutralise reactive oxygen species (ROS) in tube. AX/NHs system was also able to neutralise ROS in vitro and did not show any toxicity against HUVECs. This research suggests that HA-based NHs can represent a kind of nano-carrier suitable for the intracellular delivery of antioxidant agents, for the treatment of oxidative stress in endothelial cells.


Author(s):  
Yee Lian Tiong ◽  
Khuen Yen Ng ◽  
Rhun Yian Koh ◽  
Gnanajothy Ponnudurai ◽  
Soi Moi Chye

AbstractBackgroundCardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.Materials and methodsCell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2′,7′-dichlorofluorescein diacetate and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.ResultsOur results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.ConclusionsIn conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.


2020 ◽  
Author(s):  
Jesus Maria Sierra-Parraga ◽  
Ana Merino ◽  
Marco Eijken ◽  
Henri Leuvenink ◽  
Rutger J. Ploeg ◽  
...  

Abstract Background: The renal endothelium is a prime target for ischemia reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved.Methods: Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-a treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome deficient MSC. Results: MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions: These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI.


2017 ◽  
Vol 313 (2) ◽  
pp. H256-H264 ◽  
Author(s):  
Anna Leskova ◽  
Sibile Pardue ◽  
John D. Glawe ◽  
Christopher G. Kevil ◽  
Xinggui Shen

Recent reports have revealed that hydrogen sulfide (H2S) exerts critical actions to promote cardiovascular homeostasis and health. Thiosulfate is one of the products formed during oxidative H2S metabolism, and thiosulfate has been used extensively and safely to treat calcific uremic arteriopathy in dialysis patients. Yet despite its significance, fundamental questions regarding how thiosulfate and H2S interact during redox signaling remain unanswered. In the present study, we examined the effect of exogenous thiosulfate on hypoxia-induced H2S metabolite bioavailability in human umbilical vein endothelial cells (HUVECs). Under hypoxic conditions, we observed a decrease of GSH and GSSG levels in HUVECs at 0.5 and 4 h as well as decreased free H2S and acid-labile sulfide and increased bound sulfide at all time points. Treatment with exogenous thiosulfate significantly decreased the ratio of GSH/GSSG to total sulfide of HUVECs under 0.5 h of hypoxia but significantly increased this ratio in HUVECs under 4 h of hypoxia. These responses reveal that thiosulfate has different effects at low and high doses and under different O2 tensions. In addition, treatment with thiosulfate also diminished VEGF-induced cystathionine-γ-lyase expression and reduced VEGF-induced HUVEC proliferation under both normoxic and hypoxic conditions. These results indicate that thiosulfate can modulate H2S metabolites and signaling under various culture conditions that impact angiogenic activity. Thus, thiosulfate may serve as a unique sulfide donor to modulate endothelial responses under pathophysiological conditions involving angiogenesis. NEW & NOTEWORTHY This report provides new evidence that different levels of exogenous thiosulfate dynamically change discrete sulfide biochemical metabolite bioavailability in endothelial cells under normoxia or hypoxia, acting in a slow manner to modulate sulfide metabolites. Moreover, our findings also reveal that thiosulfate surprisingly inhibits VEGF-dependent endothelial cell proliferation associated with a reduction in cystathionine-γ-lyase protein levels.


Sign in / Sign up

Export Citation Format

Share Document