scholarly journals Cannabinoid Type 2 Receptor Activation Downregulates Stroke-Induced Classic and Alternative Brain Macrophage/Microglial Activation Concomitant to Neuroprotection

Stroke ◽  
2012 ◽  
Vol 43 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Juan G. Zarruk ◽  
David Fernández-López ◽  
Isaac García-Yébenes ◽  
María S. García-Gutiérrez ◽  
José Vivancos ◽  
...  
Author(s):  
Jaedeok Kwon ◽  
Christos Arsenis ◽  
Maria Suessmilch ◽  
Alison McColl ◽  
Jonathan Cavanagh ◽  
...  

AbstractMicroglial activation is believed to play a role in many psychiatric and neurodegenerative diseases. Based largely on evidence from other cell types, it is widely thought that MAP kinase (ERK, JNK and p38) signalling pathways contribute strongly to microglial activation following immune stimuli acting on toll-like receptor (TLR) 3 or TLR4. We report here that exposure of SimA9 mouse microglial cell line to immune mimetics stimulating TLR4 (lipopolysaccharide—LPS) or TLR7/8 (resiquimod/R848), results in marked MAP kinase activation, followed by induction of nitric oxide synthase, and various cytokines/chemokines. However, in contrast to TLR4 or TLR7/8 stimulation, very few effects of TLR3 stimulation by poly-inosine/cytidine (polyI:C) were detected. Induction of chemokines/cytokines at the mRNA level by LPS and resiquimod were, in general, only marginally affected by MAP kinase inhibition, and expression of TNF, Ccl2 and Ccl5 mRNAs, along with nitrite production, were enhanced by p38 inhibition in a stimulus-specific manner. Selective JNK inhibition enhanced Ccl2 and Ccl5 release. Many distinct responses to stimulation of TLR4 and TLR7 were observed, with JNK mediating TNF protein induction by the latter but not the former, and suppressing Ccl5 release by the former but not the latter. These data reveal complex modulation by MAP kinases of microglial responses to immune challenge, including a dampening of some responses. They demonstrate that abnormal levels of JNK or p38 signalling in microglial cells will perturb their profile of cytokine and chemokine release, potentially contributing to abnormal inflammatory patterns in CNS disease states.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bae Huey Tee ◽  
See Ziau Hoe ◽  
Swee Hung Cheah ◽  
Sau Kuen Lam

AlthoughEurycoma longifoliahas been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluatedin vitro. Results showed that DCM-II reduced (p<0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p<0.05) while bradykinin- (BK-) induced relaxation enhanced (p<0.001).In vitro, DCM-II inhibited (p<0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediatedviainhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.


2006 ◽  
Vol 290 (6) ◽  
pp. E1227-E1236 ◽  
Author(s):  
Hyunsook Kim ◽  
Patricia A. Pennisi ◽  
Oksana Gavrilova ◽  
Stephanie Pack ◽  
William Jou ◽  
...  

The antiobesity and antidiabetic effects of the β3-adrenergic agonists were investigated on nonobese type 2 diabetic MKR mice after injection with a β3-adrenergic agonist, CL-316243. An intact response to acute CL-316243 treatment was observed in MKR mice. Chronic intraperitoneal CL-316243 treatment of MKR mice reduced blood glucose and serum insulin levels. Hyperinsulinemic euglycemic clamps exhibited improvement of the whole body insulin sensitivity and glucose homeostasis concurrently with enhanced insulin action in liver and adipose tissue. Treating MKR mice with CL-316243 significantly lowered serum and hepatic lipid levels, in part due to increased whole body triglyceride clearance and fatty acid oxidation in adipocytes. A significant reduction in total body fat content and epididymal fat weight was observed along with enhanced metabolic rate in both wild-type and MKR mice after treatment. These data demonstrate that β3-adrenergic activation improves the diabetic state of nonobese diabetic MKR mice by potentiation of free fatty acid oxidation by adipose tissue, suggesting a potential therapeutic role for β3-adrenergic agonists in nonobese diabetic subjects.


2013 ◽  
Vol 54 ◽  
pp. 94-104 ◽  
Author(s):  
Maxim Kozhemyakin ◽  
Karthik Rajasekaran ◽  
Marko S. Todorovic ◽  
Samuel L. Kowalski ◽  
Corinne Balint ◽  
...  

2018 ◽  
Vol 314 (5) ◽  
pp. R709-R715 ◽  
Author(s):  
Raphael R. Perim ◽  
Daryl P. Fields ◽  
Gordon S. Mitchell

Intermittent spinal serotonin receptor activation elicits phrenic motor facilitation (pMF), a form of spinal respiratory motor plasticity. Episodic activation of either serotonin type 2 (5-HT2) or type 7 (5-HT7) receptors elicits pMF, although they do so via distinct cellular mechanisms known as the Q (5-HT2) and S (5-HT7) pathways to pMF. When coactivated, these pathways interact via mutual cross-talk inhibition. Although we have a rudimentary understanding of mechanisms mediating cross-talk interactions between spinal 5-HT2 subtype A (5-HT2A) and 5-HT7 receptor activation, we do not know if similar interactions exist between 5-HT2 subtype B (5-HT2B) and 5-HT7 receptors. We confirmed that either spinal 5-HT2B or 5-HT7 receptor activation alone elicits pMF and tested the hypotheses that 1) concurrent activation of both receptors suppresses pMF due to cross-talk inhibition; 2) 5-HT7 receptor inhibition of 5-HT2B receptor-induced pMF requires protein kinase A (PKA) activity; and 3) 5-HT2B receptor inhibition of 5-HT7 receptor-induced pMF requires NADPH oxidase (NOX) activity. Selective 5-HT2B and 5-HT7 receptor agonists were administered intrathecally at C4 (3 injections, 5-min intervals) to anesthetized, paralyzed, and ventilated rats. Whereas integrated phrenic nerve burst amplitude increased after selective spinal 5-HT2B or 5-HT7 receptor activation alone (i.e., pMF), pMF was no longer observed with concurrent 5-HT2B and 5-HT7 receptor agonist administration. With concurrent receptor activation, pMF was rescued by inhibiting either NOX or PKA activity, demonstrating their roles in cross-talk inhibition between these pathways to pMF. This report demonstrates cross-talk inhibition between 5-HT2B- and 5-HT7 receptor-induced pMF and that NOX and PKA activity are necessary for that cross-talk inhibition.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Malvyne Rolli‐Derkinderen ◽  
Christophe Guilluy ◽  
Laurent Loufrani ◽  
Daniel Henrion ◽  
Gervaise Loirand ◽  
...  

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Shetal H Padia ◽  
Nancy L Howell ◽  
Brandon A Kemp ◽  
John J Gildea ◽  
Susanna R Keller ◽  
...  

A major proposed mechanism for the initiation of hypertension involves a primary increase in renal tubular sodium (Na+) reabsorption. Activation of intrarenal angiotensin type-2 receptors (AT2R) increases Na+ excretion; however, the role of intrarenal angiotensin type-2 receptors (AT2R) in the development of hypertension is unknown. Sprague-Dawley rats (N=36) underwent uninephrectomy and telemetric blood pressure probe implantation. Following a 72h recovery, two osmotic minipumps were inserted in each rat, one for chronic systemic delivery of 5% dextrose in water (D5W) or angiotensin II (Ang II, 200 ng/kg/min), and one for chronic intrarenal delivery of D5W (0.25 μL/h x 7d), highly selective AT2R agonist Compound 21 (C-21; 60 ng/kg/min x 7d), or specific AT2R antagonist PD-1223319 (PD; 10 ng/kg/min x 7d). Five groups of rats were studied: Group 1 (Control; N=10): systemic D5W + intrarenal D5W; Group 2 (Ang II-induced hypertension; N=8): systemic Ang II + intrarenal D5W; Group 3 (N=6): systemic Ang II + intrarenal C-21; Group 4 (N=6): systemic Ang II + 48h lead-in intrarenal C-21; Group 5 (N=6): systemic Ang II + intrarenal PD. Systemic Ang II infusion increased mean systolic blood pressure from 126±5 to 190±3 mm Hg over a 7d period in Group 2 (ANOVA F=73; P<1 X 10-6). Intrarenal administration of AT2R agonist C-21 (Groups 3 and 4) markedly inhibited the pressor effect of systemic Ang II (P<0.0001). Intrarenal AT2R antagonist PD (Group 5) augmented the pressor action of Ang II (P<0.0001). Consecutive 24h urinary Na+ excretion (UNaV) was reduced from 0.95±0.04 to 0.34±0.07 μmol/min (P<0.0001) on day 1 of Ang II infusion; Ang II-induced antinatriuresis was inhibited by intrarenal C-21 (P<0.0001) and augmented by intrarenal PD (P<0.0001) during the entire 7d infusion, demonstrating that one of the mechanisms to prevent Ang II-induced hypertension during intrarenal AT2R activation is the abolition of the initial increase in Na+ reabsorption that triggers the hypertensive cascade in this model. Thus, renal AT2Rs represent a novel therapeutic target for the prevention of hypertension.


2008 ◽  
Vol 123 (5) ◽  
pp. 1025-1033 ◽  
Author(s):  
Kristin Gustafsson ◽  
Xiao Wang ◽  
Denise Severa ◽  
Maeve Eriksson ◽  
Eva Kimby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document