Stereoscopic Views Improve Spatial Presence but not Spatial Learning in VR Games

Author(s):  
Cigdem Uz-Bilgin ◽  
Meredith Thompson ◽  
Eric Klopfer

Abstract A key affordance of virtual reality is the capability of immersive VR to prompt spatial presence resulting from the stereoscopic lenses in the head mounted display (HMD). We investigated the effect of a stereoscopic view of a game, Cellverse, on users' perceived spatial presence, knowledge of cells, and learning in three levels of spatial knowledge: route, landmark, and survey knowledge. Fifty-one participants played the game using the same game controllers but with different views; 28 had a stereoscopic view (HMD), and 23 had a non-stereoscopic view (computer monitor). Participants explored a diseased cell for clues to diagnose the disease type and recommend a therapy. We gathered surveys, drawings, and spatial tasks conducted in the game environment to gauge learning. Participants' spatial knowledge of the cell environment and knowledge of cell concepts improved after gameplay in both conditions. Spatial presence scores in the stereoscopic condition were higher than the non-stereoscopic condition with a large effect size, however there was no significant difference in levels of spatial knowledge between the two groups. Most all drawings showed a change in cell knowledge, yet some participants only changed in spatial knowledge of the cell, and some changed in both cell knowledge and spatial knowledge. Evidence suggests that a stereoscopic view has a significant effect on users' experience of spatial presence, but that increased presence does not directly translate into spatial learning.

2002 ◽  
Vol 11 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Bob G. Witmer ◽  
Wallace J. Sadowski ◽  
Neal M. Finkelstein

Virtual environments (VEs) have been used successfully to train wayfinders to navigate through buildings and learn their layout. However, at the same time, for many, the VE deficiencies have reduced the effectiveness of VEs for training spatial tasks. In an effort to improve VE effectiveness, we conducted research to determine if certain unique capabilities of VEs could compensate for its deficiencies. Research participants were required to learn the layout or configuration of one floor of an office building as portrayed in a VE. To improve spatial learning, we developed three VE navigation training aids: local and global orientation cues, aerial views, and a themed environment enhanced with sights and sounds and divided into four distinct sectors. The navigation aids were provided during the training but were not available during testing of survey knowledge. Of the three training aids investigated, only the aerial views were effective in improving performance on the survey knowledge tests. The effectiveness of the navigation aids seemed to depend on how they were used during training. A retention test given one week after training indicated that spatial knowledge acquired in a VE diminished little over the one-week retention interval.


2021 ◽  
Vol 17 (3) ◽  
pp. 422-430
Author(s):  
Federico Massini ◽  
Lars Ebert ◽  
Garyfalia Ampanozi ◽  
Sabine Franckenberg ◽  
Lena Benz ◽  
...  

AbstractEvidence acquisition, interpretation and preservation are essential parts of forensic case work that make a standardized documentation process fundamental. The most commonly used method for the documentation and interpretation of superficial wounds is a combination of two modalities: two-dimensional (2D) photography for evidence preservation and real-life examination for wound analysis. As technologies continue to develop, 2D photography is being enhanced with three-dimensional (3D) documentation technology. In our study, we compared the real-life examination of superficial wounds using four different technical documentation and visualization methods.To test the different methods, a mannequin was equipped with several injury stickers, and then the different methods were applied. A total of 42 artificial injury stickers were documented in regard to orientation, form, color, size, wound borders, wound corners and suspected mechanism of injury for the injury mechanism. As the gold standard, superficial wounds were visually examined by two board-certified forensic pathologists directly on the mannequin. These results were compared to an examination using standard 2D forensic photography; 2D photography using the multicamera system Botscan©, which included predefined viewing positions all around the body; and 3D photogrammetric reconstruction based on images visualized both on screen and in a virtual reality (VR) using a head-mounted display (HMD).The results of the gold standard examination showed that the two forensic pathologists had an inter-reader agreement ranging from 69% for the orientation and 11% for the size of the wounds. A substantial portion of the direct visual documentation showed only a partial overlap, especially for the items of size and color, thereby prohibiting the statistical comparison of these two items. A forest plot analysis of the remaining six items showed no significant difference between the methods. We found that among the forensic pathologists, there was high variability regarding the vocabulary used for the description of wound morphology, which complicated the exact comparison of the two documentations of the same wound.There were no significant differences for any of the four methods compared to the gold standard, thereby challenging the role of real-life examination and 2D photography as the most reliable documentation approaches. Further studies with real injuries are necessary to support our evaluation that technical examination methods involving multicamera systems and 3D visualization for whole-body examination might be a valid alternative in future forensic documentation.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1114
Author(s):  
Tatsunori Sawada ◽  
Hiroki Uda ◽  
Akira Suzuki ◽  
Kounosuke Tomori ◽  
Kanta Ohno ◽  
...  

Background: Although various technologies are used to evaluate driving skill, there are some limitations such as the limited range of the monitor and the possible risk of causing cybersickness. The purpose of this study is to investigate differences in the hazard perception and cybersickness experienced between novice and experienced drivers measured in a VR hazard perception test with a head-mounted display (HMD). Methods: The novice (n = 32) and the experienced drivers (n = 36) participated in the hazard perception test through the VR of an HMD. Results: The total number of identified hazards was 1071 in the novice drivers and 1376 in the experienced drivers. Two of the hazards appeared to be only identifiable through the HMD. A chi-square test revealed that experienced drivers were more likely to identify the hazards than the novice drivers (p < 0.05). The novice drivers appeared to identify “hazard prediction of the current behavior of other road users” more than other hazard types, unlike the experienced group. The Simulator Sickness Questionnaire scores indicated no significant difference in the different age or gender groups (p > 0.05). Conclusion: Our results suggest that the VR hazard perception test may be useful for evaluating patients’ driving skills.


Author(s):  
سيد طنطاوي

The aim of this research is to develop some concepts of web3 for the education technology specialist, to present a proposed training program for web3 technology, to define the concepts and technology of web3. There is a statistically significant difference at the level (0.05) between the average scores of education technology specialists in the pre and post applications to test the web3.0 concepts in favor of the post application. In light of the significance of the differences using the "T" tests, the square of ETA (2η) was calculated using the equation Eta square (2 η) to find the magnitude of the effect of the independent variable (training program) in the dependent variable (development of web3.0 concepts), and by calculating the value of the square of ETA (2)) (Al-Amiri, 2006, 233), reached (0.98), which indicates that the training program has a significant impact on the acquisition of some concepts of web3.0, where this value shows that the training program contributed (98%) of the total variance In developing these concepts,It is a large percentage indicating the effectiveness of the training program in developing web3.0 concepts for the target research sample, which is the education technology specialist (if the effect size = 0.2 is the effect is weak, and if the impact size = 0.5, the effect is moderate, and if the impact size is = 0.8 The effect is significant), (Asr, 2003). From the above it is clear that the training program contributed to the development of the targeted web3.0 concepts for education technology specialists, as it found a difference between the median of the pre and post applications to test the concepts of the web3.0 in favor of the post application at the research group, which averaged (51,85) compared to (16) , 75) for pre-application, with a large effect size of (0.98) according to the ETA square measure (2η) of the effect size.


2009 ◽  
Vol 110 (3) ◽  
pp. 529-537 ◽  
Author(s):  
Irina Lasarzik ◽  
Uta Winkelheide ◽  
Sonja Stallmann ◽  
Christian Orth ◽  
Astrid Schneider ◽  
...  

Background Postischemic endogenous neurogenesis can be dose-dependently modulated by volatile anesthetics. The intravenous anesthetic propofol is used during operations with a risk of cerebral ischemia, such as neurosurgery, cardiac surgery, and vascular surgery. The effects of propofol on neurogenesis are unknown and, therefore, the object of this study. Methods Eighty male Sprague-Dawley rats were randomly assigned to treatment groups with propofol administration for 3 h: 36 mg x kg(-1) x h(-1) propofol with or without cerebral ischemia and 72 mg x kg(-1) x h(-1) propofol with or without cerebral ischemia. In addition, 7 rats with propofol administration for 6 h and 14 treatment-naive rats were investigated. Forebrain ischemia was induced by bilateral carotid artery occlusion and hemorrhagic hypotension. Animals received 5-bromo-2-deoxyuridine for 7 days. 5-Bromo-2-deoxyuridine-positive neurons were counted in the dentate gyrus after 9 and 28 days. Spatial learning in the Barnes maze and histopathologic damage of the hippocampus were analyzed. Results Propofol revealed no impact on basal neurogenesis. Cerebral ischemia increased the amount of new neurons. After 28 days, neurogenesis significantly increased in animals with low-dose propofol administered during cerebral ischemia compared with naive animals, whereas no significant difference was observed in animals with high-dose propofol during ischemia. Neuronal damage in the CA3 region was increased at 28 days with high-dose propofol. Postischemic deficits in spatial learning were not affected by propofol. Conclusions Independent effects of propofol are difficult to ascertain. Peri-ischemic propofol administration may exert secondary effects on neurogenesis by modulating the severity of histopathologic injury and thereby regenerative capacity of the hippocampus.


2020 ◽  
pp. 104687812094456
Author(s):  
Panos Kostakos ◽  
Paula Alavesa ◽  
Mikko Korkiakoski ◽  
Mario Monteiro Marques ◽  
Victor Lobo ◽  
...  

Background Wayfinding has been adopted in several intense evacuation and navigation simulations; however, the use of biometric measurements for characterizing physiological outcomes has been somewhat overlooked and applied only under limited laboratory conditions. Methods Twenty-four participants took part in a virtual reality (VR) experiment using a wayfinding installation with the Oculus Rift S head-mounted display (HMD). They were immersed in a simulation of a burning underground parking lot and tasked to navigate to the exit. The purpose of this research was to investigate the high-level effect of wayfinding assistive lights on behavioral, physiological, and psychological outcomes. Participants were split into two groups: the control group was exposed to a scene without assistive lights, and the experimental group was exposed to the same scene with assistive lights. Results Results indicate there was no statistically significant difference between the groups in traveled distance, pauses, turns, or game completion time. Curiously, differences between the two groups in heart rate (HR) outcomes were found to be statistically significant, with subjects in the control group displaying an increasing HR trend during simulation. Conclusions This finding, in accordance with previous studies that have shown the efficacy of landmarks and wayfinding affordances in reducing cognitive demands, suggests that assistive lights might contribute to improved brain wiring connectivity during the game. We discuss these findings in the context of a rich wayfinding affordances literature.


2019 ◽  
Vol 8 (3) ◽  
pp. 149 ◽  
Author(s):  
Heinrich Löwen ◽  
Jakub Krukar ◽  
Angela Schwering

The prevalent use of GPS-based navigation systems impairs peoples’ ability to orient themselves. This paper investigates whether wayfinding maps that accentuate different types of environmental features support peoples’ spatial learning. A virtual-reality driving simulator was used to investigate spatial knowledge acquisition in assisted wayfinding tasks. Two main conditions of wayfinding maps were tested against a base condition: (i) highlighting local features, i.e., landmarks, along the route and at decision points; and (ii) highlighting structural features that provide global orientation. The results show that accentuating local features supports peoples’ acquisition of route knowledge, whereas accentuating global features supports peoples’ acquisition of survey knowledge. The results contribute to the general understanding of spatial knowledge acquisition in assisted wayfinding tasks. Future navigation systems could enhance spatial knowledge by providing visual navigation support incorporating not only landmarks but structural features in wayfinding maps.


2020 ◽  
pp. 1420326X2090949
Author(s):  
Young Hee Min ◽  
Mikyoung Ha

Symmetrical hospital buildings often use a colour-zoning differentiation strategy to vary the repetition and monotony of their architectural structures. However, there is scarce scientific evidence or systematized research regarding the cognitive effects of interior colour schemes applied to the entire building. The present study investigated the effect of colour schemes combined with geometric plan configurations on multidimensional spatial knowledge acquisition. In total, 192 participants navigated 12 virtual environments – combinations of three distinct geometric plans and four colour schemes of varying contrasts and hues. Generalised linear models were used to predict the effects of environmental factors (plan configurations and colour schemes) and individual factors (age, gender, sense of direction and gaming experience). The results indicated that the colour scheme significantly contributed only to landmark and route knowledge, and acquiring survey knowledge was only significantly affected by plan configuration. Women were more significantly influenced by environmental factors and men by individual factors, regardless of varied environmental attributes.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


Sign in / Sign up

Export Citation Format

Share Document