Arabidopsis thaliana as a model plant to study host-Meloidogyne graminicola interactions

Nematology ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1015-1024
Author(s):  
Qiuling Huang ◽  
Handa Song ◽  
Borong Lin ◽  
Xiaodan Zheng ◽  
Wenjun Wang ◽  
...  

Summary The use of Arabidopsis thaliana as a model plant increased the rate of molecular discoveries of plant-pathogen interactions. Although Meloidogyne graminicola has a relatively broad host range, it is not known whether it can infect A. thaliana. In this study, we showed that M. graminicola is able to invade A. thaliana and complete its life cycle 12-14 days after invasion. No significant difference in the total number of nematodes inside roots of A. thaliana and rice, Oryza sativa, was found at 14 day after inoculation (dai). Significantly more galls were formed in A. thaliana roots compared to the numbers in O. sativa roots at 14 dai. Females laid egg masses on the A. thaliana root surface and a large number of hatched juveniles of the next generation were obtained from infected A. thaliana roots. In addition, the infection of M. graminicola can induce expression of A. thaliana basal defence genes, such as AtMYB51, AtWRKY11, AtPR1 and AtFRK1, at 24 h after inoculation. Therefore, A. thaliana can be considered as a suitable host to study host-M. graminicola interactions and to understand the molecular mechanisms developed by M. graminicola to infect its dicotyledonous host plants. In addition, our results also showed that a delayed development of M. graminicola occurred in A. thaliana compared to O. sativa, and a higher proportion of empty galls appeared in A. thaliana roots than in O. sativa roots, suggesting A. thaliana is a less optimal host than rice.

2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Kai Battenberg ◽  
Jannah A. Wren ◽  
Janell Hillman ◽  
Joseph Edwards ◽  
Liujing Huang ◽  
...  

ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp.


2019 ◽  
Author(s):  
D. Patrick Bastedo ◽  
Derek Seto ◽  
Alexandre Martel ◽  
Madiha Khan ◽  
Inga Kireeva ◽  
...  

ABSTRACTThe Pseudomonas syringae acetyltransferase HopZ1a is delivered directly into host cells by the type III secretion system to promote bacterial growth. However, in the model plant host Arabidopsis thaliana, HopZ1a activity results in an effector-triggered immune response (ETI) that limits bacterial proliferation. HopZ1a-triggered immunity requires the nucleotide-binding, leucine-rich repeat domain (NLR) protein, ZAR1, and the ZED1 pseudokinase. Here we demonstrate that HopZ1a can acetylate members of a family of ‘receptor-like cytoplasmic kinases’ (RLCK family VII; also known as PBS1-like kinases, or PBLs) and promote their interaction with ZED1 and ZAR1 to form a ZAR1/ZED1/PBL ternary complex. Interactions between ZED1 and PBL kinases are determined by the pseudokinase features of ZED1, and mutants designed to restore ZED1 kinase motifs can (1) bind to PBLs, (2) recruit ZAR1, and (3) trigger immunity in planta, all independently of HopZ1a. Our results suggest that interactions between these two RLCK families are promoted by perturbations of structural features that distinguish active from inactive kinase domain conformations. We propose that effector-induced interactions between ZED1/ZRK pseudokinases (RLCK family XII) and PBL kinases (RLCK family VII) provide a sensitive mechanism for detecting perturbations of either kinase family and activating ZAR1-mediated ETI.AUTHOR SUMMARYAll plants must ward off potentially infectious microbes, and those grown in large-scale crop operations are especially vulnerable to the rapid spread of disease by successful pathogens. Although many bacteria and fungi can supress plant immune responses by producing specialized virulence proteins called ‘effectors’, these effectors can also trigger immune responses that render plants resistant to infection. We studied the molecular mechanisms underlying one such effector-triggered immune response elicited by the bacterial effector HopZ1a in the model plant host Arabidopsis thaliana. We have shown that HopZ1a promotes binding between a ZED1, a ‘pseudokinase’ required for HopZ1a-triggered immunity, and several ‘true kinases’ (known as PBLs) that are likely targets of HopZ1a activity in planta. HopZ1a-induced ZED1-PBL interactions also recruit ZAR1, an Arabidopsis ‘resistance protein’ previously implicated in HopZ1a-triggered immunity. Importantly, ZED1 mutants that restore degenerate kinase motifs can bridge interactions between PBLs and ZAR1 (independently of HopZ1a) and trigger immunity in planta. Our results suggest that equilibria between active and inactive kinase domain conformations regulate ZED1-PBL interactions and formation of ternary complexes with ZAR1. Improved models describing molecular interactions between immunity determinants, effectors and effector targets will inform efforts to exploit natural diversity for development of crops with enhanced disease resistance.


2019 ◽  
Vol 57 (1) ◽  
pp. 279-299 ◽  
Author(s):  
Christopher R. Clarke ◽  
Michael P. Timko ◽  
John I. Yoder ◽  
Michael J. Axtell ◽  
James H. Westwood

Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds ( Striga spp.) and broomrapes ( Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant–pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.


Nematology ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. 491-499 ◽  
Author(s):  
Diana Naalden ◽  
Ruben Verbeek ◽  
Godelieve Gheysen

Summary Nicotiana benthamiana is widely used as a model plant to analyse cell biology and to obtain insight into the molecular host-pathogen interaction because it is susceptible to many pathogens. Since N. benthamiana can be transformed easily, it is also used to study pathogens for which it is not a known host. Meloidogyne graminicola has a fairly broad host range of mainly monocots and some dicots but no data were available on the ability of M. graminicola to infect N. benthamiana. In this study, we show that M. graminicola is able to infect and complete its life cycle in N. benthamiana, although our experiments demonstrate a lower susceptibility compared to rice. In addition, M. graminicola was also able to develop in N. tabacum but the reproduction was very low. Therefore, we conclude that N. benthamiana can be considered as a host, while this is not the case for N. tabacum.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Michael Thomson

Conventional breeding approaches that focus on yield under highly favorable nutrient conditions have resulted in reduced genetic and trait diversity in crops. Under the growing threat from climate change, the mining of novel genes in more resilient varieties can help dramatically improve trait improvement efforts. In this work, we propose the use of the joint graphical lasso for discovering genes responsible for desired phenotypic traits. We prove its efficiency by using gene expression data for wild type and delayed flowering mutants for the model plant. Arabidopsis thaliana shows that it recovers the mutation causing genes LNK1 and LNK2. Some novel interactions of these genes were also predicted. Observing the network level changes between two phenotypes can also help develop meaningful biological hypotheses regarding the novel functions of these genes. Now that this data analysis strategy has been validated in a model plant, it can be extended to crop plants to help identify the key genes for beneficial traits for crop improvement.


Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Roberta Magnano San Lio ◽  
Maria Clara La Rosa ◽  
Claudia La Mastra ◽  
...  

Several studies—albeit with still inconclusive and limited findings—began to focus on the effect of drinking alcohol on telomere length (TL). Here, we present results from a systematic review of these epidemiological studies to investigate the potential association between alcohol consumption, alcohol-related disorders, and TL. The analysis of fourteen studies—selected from PubMed, Medline, and Web of Science databases—showed that people with alcohol-related disorders exhibited shorter TL, but also that alcohol consumption per se did not appear to affect TL in the absence of alcohol abuse or dependence. Our work also revealed a lack of studies in the periconceptional period, raising the need for evaluating this potential relationship during pregnancy. To fill this gap, we conducted a pilot study using data and samples form the Mamma & Bambino cohort. We compared five non-smoking but drinking women with ten non-smoking and non-drinking women, matched for maternal age, gestational age at recruitment, pregestational body mass index, and fetal sex. Interestingly, we detected a significant difference when analyzing relative TL of leukocyte DNA of cord blood samples from newborns. In particular, newborns from drinking women exhibited shorter relative TL than those born from non-drinking women (p = 0.024). Although these findings appeared promising, further research should be encouraged to test any dose–response relationship, to adjust for the effect of other exposures, and to understand the molecular mechanisms involved.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Marie-Laure Desprez-Loustau ◽  
Marie Massot ◽  
Nicolas Feau ◽  
Tania Fort ◽  
Antonio de Vicente ◽  
...  

Mango leaves and inflorescences infected by powdery mildew in southern Spain were analyzed using multigene sequencing (ITS + 4 single-copy coding genes) to identify the causal agent. Erysiphe quercicola was detected in 97% out of 140 samples, collected in six different orchards in the Malaga region. Among these, a small proportion also yielded E. alphitoides (8% of all samples) and E. alphitoides was found alone in 3% of samples. A phylogenetic approach was completed by cross inoculations between oak and mango, which led to typical symptoms, supporting the conspecificity of oak and mango powdery mildews. To our knowledge, this is the first report of E. quercicola and E. alphitoides causing powdery mildew on mango trees in mainland Spain, and thus mainland Europe, based on unequivocal phylogenetic and biological evidence. Our study thus confirmed the broad host range of both E. quercicola and E. alphitoides. These results have practical implications in terms of the demonstrated ability for host range expansion in powdery mildews. They also open interesting prospects to the elucidation of molecular mechanisms underlying the ability to infect single versus multiple and unrelated host plants since these two closely related powdery mildew species belong to a small clade with both generalist and specialist powdery mildews.


1993 ◽  
Vol 39 (3) ◽  
pp. 329-334 ◽  
Author(s):  
J. Boelens ◽  
D. Zoutman ◽  
J. Campbell ◽  
W. Verstraete ◽  
W. Paranchych

The adherence of the plant growth promoting rhizopseudomonads Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15 to canola roots (Brassica campestris L. c.v. Tobin) was examined by means of a bacterial bioluminescence system. The bioluminescence broad host range vector pDLUX-I was constructed from pLAFR-I and the lux A–E genes of Vibrio fischerii. This vector was conjugally transferred into the plant growth promoting rhizopseudomonads 7NSK2 and ANP15. The transformed strains were constitutively bioluminescent at an optimal temperature of 21 °C. The measured bioluminescence was directly proportional to the density of the bacteria in suspension and was the same for both planktonic and sessile bacteria adhering to the root surface. The adherence of the plant growth promoting rhizopseudomonads was proportional to the density of the bacterial inoculum, approached saturation at 60 min, and was reversible. The kinetics of the microbial adhesion was described by a Freundlich isotherm suggesting that the adherence of the bacteria to the canola root surface does not involve specific receptors. We conclude that the pDLUX-I vector is an easy and accurate way to study the kinetics of microbial adherence to the rhizoplane.Key words: rhizopseudomonads, bioluminescence, adhesion, plant growth promotion.not available


Sign in / Sign up

Export Citation Format

Share Document