Protective effect of glutathione against oxidative injury in intestinal epithelial cells of piglet in vitro

2009 ◽  
Vol 59 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Qun Chen ◽  
Ying-Qiu Li ◽  
Shu-Ming Zhang ◽  
Hai-Yan Liu

AbstractOxidative stress of intestinal epithelium is involved in inflammatory bowel disease. To investigate protective effects of glutathione (GSH) on xanthine/xanthine oxidase (X/XO)-induced oxidative injury in intestinal epithelial cells (IECs). We employed in vitro cell culture supplemented with X/XO. IECs were cultured for 72 h, and then divided into seven groups with various concentrations of X/XO and GSH supplementation in the medium. Agarose gel electrophoresis lanes indicated that X/XO induced DNA injury by the high concentration of XO (40, 70 U/L)-treated groups. The X/XO supplementation significantly increased the production of malondialdehyde (MDA) in a dose-dependent manner. There was a slight increase in total radical-trapping antioxidant potential (TRAP) value by the low concentration of XO (10U/L) alone-treated group (P > 0.05) while supplementation of a high concentration of XO (40, 70 U/L) significantly decreased TRAP value compared with XO (10 U/L) and the control group (P < 0.05). Addition of GSH decreased the production of MDA and DNA fragmentations (P < 0.05), but enhanced TRAP value (P < 0.05). These results suggest that IECs of piglet have the ability of enduring mild oxidative stress induced by a low concentration of XO. Although high concentrations of XO resulted in oxidation injury and lipid peroxidation in the IECs, additions of GSH to the medium showed significant protection against the X/XO-induced oxidative stress.

Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2010 ◽  
Vol 299 (3) ◽  
pp. G733-G741 ◽  
Author(s):  
Sabine M. Ivison ◽  
Ce Wang ◽  
Megan E. Himmel ◽  
Jared Sheridan ◽  
Jonathan Delano ◽  
...  

Intestinal epithelial cells act as innate immune sentinels, as the first cells that encounter diarrheal pathogens. They use pattern recognition molecules such as the Toll-like receptors (TLRs) to identify molecular signals found on microbes but not host cells or food components. TLRs cannot generally distinguish the molecular signals on pathogenic bacteria from those found in commensals, yet under healthy conditions epithelial immune responses are kept in check. We hypothesized that, in the setting of tissue damage or stress, intestinal epithelial cells would upregulate their responses to TLR ligands to reflect the greater need for immediate protection against pathogens. We treated Caco-2 cells with the TLR5 agonist flagellin in the presence or absence of H2O2 and measured chemokine production and intracellular signaling pathways. H2O2 increased flagellin-induced IL-8 (CXCL8) production in a dose-dependent manner. This was associated with synergistic phosphorylation of p38 MAP kinase and with prolonged I-κB degradation and NF-κB activation. The H2O2-mediated potentiation of IL-8 production required the activity of p38, tyrosine kinases, phospholipase Cγ, and intracellular calcium, but not protein kinase C or protein kinase D. H2O2 prolonged and augmented NF-κB activation by flagellin. In contrast to IL-8, CCL20 (MIP3α) production by flagellin was reduced by H2O2, and this effect was not calcium dependent. Oxidative stress biases intestinal epithelial responses to flagellin, leading to increased production of IL-8 and decreased production of CCL20. This suggests that epithelial cells are capable of sensing the extracellular environment and adjusting their antimicrobial responses accordingly.


Author(s):  
Wang Li ◽  
Jingbo Zhang ◽  
Peng Cheng ◽  
Longmei Zhao

Background: The aim of this test was study the gut adhesion ability of recombinant Lactobacilli and their improvement of the digestibility of crude fiber in chick diet. Methods: The adhesion ability was observed through in vitro and in vivo tests. Intestinal epithelial cells and recombinant Lactobacillus were co-cultured for observation of adhesion. One hundred one-day-old chicks were randomly divided into four groups; C15, C73, C1573 and control. Each chick in C15, C73, C1573 and control were orally gavaged with 200 ìL of fermentation broth of recombinant L. reuteri XNY-Cel15, 200 ìL of fermentation broth of recombinant L. reuteri XNY-Cel73 and 200 ìL of broth containing equal XNY-Cel15 and XNY-Cel73, 200 ìL of MRS broth, once at the beginning of the trial respectively. Result: Recombinant L. reuteri adhered to chick intestinal epithelial cells which co-cultured together in vitro. After feeding for 30 days, the reporter genes of recombinant Lactobacillus was detected in the crop, small intestine and cecum of trial chicks, with their sequences corresponding to those of the insert genes. The digestibility of crude fiber in experimental groups was higher than that in control group and the digestibility of C15 was significantly higher than other groups (P less than 0.01). It showed that the recombinant Lactobacillus can survive in the digestive tract of chicken for more than 30 days and helped to decompose the crude fiber in the digestive tract.


2016 ◽  
Vol 310 (4) ◽  
pp. G285-G293 ◽  
Author(s):  
Veedamali S. Subramanian ◽  
Nils Lambrecht ◽  
Christian Lytle ◽  
Hamid M. Said

Riboflavin (RF) is indispensable for normal cell metabolism, proliferation, and growth. The RFVT-3 protein (product of the Slc52a3 gene) is expressed in the gut with the expression being restricted to the apical membrane domain of the polarized intestinal epithelial cells. The relative contribution of RFVT-3 to total carrier-mediated RF uptake in the native intestine, however, is not clear. We addressed this issue in the current investigation using a conditional (intestinal-specific) RFVT-3 knockout (cKO) mouse model developed by the Cre/Lox approach. All RFVT-3 cKO mice were found to be RF deficient and showed a significant growth and development retardation; also, nearly two-thirds of them died prematurely between the age of 6 and 12 wk. In vivo (intestinal and colonic loops) and in vitro (native isolated intestinal epithelial cells) uptake studies showed a severe inhibition in carrier-mediated RF uptake in the cKO mice compared with control littermates. We also observed a significant increase in the level of expression of oxidative stress-responsive genes in the intestine of the cKO mice compared with control littermates. Supplementation of the RFVT-3 cKO mice with pharmacological doses of RF led to a complete correction of the growth retardation and to normalization in the level of expression of the oxidative stress-responsive genes in the gut. These results show, for the first time, that the RFVT-3 system is the main transporter involved in carrier-mediated RF uptake in the native mouse small and large intestine, and that its dysfunction impairs normal RF body homeostasis.


2020 ◽  
Vol 85 (2) ◽  
pp. 430-439
Author(s):  
Nayla Majeda Alfarafisa ◽  
Kohji Kitaguchi ◽  
Tomio Yabe

ABSTRACT Under oxidative stress, reactive oxygen species (ROS) alter signal transduction and induce macromolecular damage in cells. Such oxidative damage can lead to sarcopenia, an age-related syndrome characterized by a progressive loss of mass and strength of skeletal muscles. Because food components do not directly come in contact with muscle cells, we focused on the effects of secretions produced by stimulated intestinal epithelial cells on oxidative stress in myoblast cells. An extract of Diospyros kaki was fractionated using different concentrations of ethanol. Each fraction showed different levels of antioxidant and phenolic compounds. The biological activity was evaluated using a Caco-2 cell coculture system. Secretions from Caco-2 cells exposed to 0.5 mg/mL D. kaki extract attenuated the oxidative stress-induced reduction of C2C12 cell viability, suggesting that the D. kaki extract could stimulate intestinal epithelial cells to produce secretions that reduce oxidative stress in myoblasts in vitro.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


2016 ◽  
Vol 310 (7) ◽  
pp. C542-C557 ◽  
Author(s):  
Jia Wang ◽  
Liang Han ◽  
James Sinnett-Smith ◽  
Li-Li Han ◽  
Jan V. Stevens ◽  
...  

Given the fundamental role of β-catenin signaling in intestinal epithelial cell proliferation and the growth-promoting function of protein kinase D1 (PKD1) in these cells, we hypothesized that PKDs mediate cross talk with β-catenin signaling. The results presented here provide several lines of evidence supporting this hypothesis. We found that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II (ANG II), a potent inducer of PKD activation, promoted endogenous β-catenin nuclear localization in a time-dependent manner. A significant increase was evident within 1 h of ANG II stimulation ( P < 0.01), peaked at 4 h ( P < 0.001), and declined afterwards. GPCR stimulation also induced a marked increase in β-catenin-regulated genes and phosphorylation at Ser552 in intestinal epithelial cells. Exposure to preferential inhibitors of the PKD family (CRT006610 or kb NB 142-70) or knockdown of the isoforms of the PKD family prevented the increase in β-catenin nuclear localization and phosphorylation at Ser552 in response to ANG II. GPCR stimulation also induced the formation of a complex between PKD1 and β-catenin, as shown by coimmunoprecipitation that depended on PKD1 catalytic activation, as it was abrogated by cell treatment with PKD family inhibitors. Using transgenic mice that express elevated PKD1 protein in the intestinal epithelium, we detected a marked increase in the localization of β-catenin in the nucleus of crypt epithelial cells in the ileum of PKD1 transgenic mice, compared with nontransgenic littermates. Collectively, our results identify a novel cross talk between PKD and β-catenin in intestinal epithelial cells, both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document