scholarly journals Evaluation of Biochemical, Hematological and Antioxidant Properties in Mice Exposed to a Triherbal (<i>Nigella sativa, Carica papaya and Boswellia sacra</i>) Formular

Cell Biology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Kehinde Sowunmi ◽  
Adebayo Sofiyyah Modupeola ◽  
Adesiyan Ayobami Lawal ◽  
Kade Emmanuel Ayomikun ◽  
Gurpreet Kaur
2020 ◽  
Author(s):  
S. Kehinde ◽  
S. M. Adebayo ◽  
A. L. Adesiyan ◽  
E. A. Kade ◽  
K. Gurpreet

AbstractNigella sativa, Carica papaya and Boswellia sacra are medicinal plants in the commonly used in folkloric medicine due to the presence of its immense therapeutic properties. Fifty (50) female albino mice weighing between 15-22g were divided into five groups of 10 mice each. Animal in group 1 served as control group and were administered distilled water while animal in group 2 were given 2ml of cisplatin (orally). Animal in group 3-5 were given orally; 100 mg/kg (low dose), 200 mg/kg (medium dose) and 400 mg/kg (high dose) of triherbal preparation. The feeding regimens lasted for 28 days. After 28 days, mammary gland and blood samples were collected for haematological and antioxidant analysis. The triherbal formula decreased the GSH and MDA levels of mice treated with 100 mg/kg and 400 mg/kg doses compare to control. The measurement of total protein content, SOD and CAT increased in treated animals compared to control. However, RBC (Red Blood Cell) counts significantly decreased in the low, medium and high dose groups (0.95±0.08, 6.57±0.08 and 3.55±0.55 x 106 cells/mm3 respectively) compared to control (7.34±0.40) at P<0.05. Also, significant decreases (P<0.05) in the level of the total WBC (White Blood Cell) count, platelet count, PCV (Packed Cell Volume) and Hb (haemoglobin) concentration were observed. The decreases were dose dependent. The MCH (Mean Corpuscular Haemoglobin) and MCHC (Mean Corpuscular Haemoglobin Concentration) except MCV (Mean Corpuscular Volume) significantly decreased in treated group only. The triherbal formulation exhibited significant antioxidant activities showing increased levels of SOD, CAT and Protein content due to activation of the enzyme involve in detoxification of free radicals and decreased in the level of GSH and MDA due to accumulation of peroxides and H2O2. Also, decreased in haematological parameters due to the presence of phytochemicals such as phenol, resins, saponins, sterols, tannis and terpenes in the triherbal formula. Therefore, it has potential to induce haematotoxicity hence consumption of high concentrations should be discouraged.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 287
Author(s):  
Yew Rong Kong ◽  
Yong Xin Jong ◽  
Manisha Balakrishnan ◽  
Zhui Ken Bok ◽  
Janice Kwan Kah Weng ◽  
...  

Oxidative stress is a result of disruption in the balance between antioxidants and pro-oxidants in which subsequently impacting on redox signaling, causing cell and tissue damages. It leads to a range of medical conditions including inflammation, skin aging, impaired wound healing, chronic diseases and cancers but these conditions can be managed properly with the aid of antioxidants. This review features various studies to provide an overview on how Carica papaya help counteract oxidative stress via various mechanisms of action closely related to its antioxidant properties and eventually improving the management of various oxidative stress-related health conditions. Carica papaya is a topical plant species discovered to contain high amounts of natural antioxidants that can usually be found in their leaves, fruits and seeds. It contains various chemical compounds demonstrate significant antioxidant properties including caffeic acid, myricetin, rutin, quercetin, α-tocopherol, papain, benzyl isothiocyanate (BiTC), and kaempferol. Therefore, it can counteract pro-oxidants via a number of signaling pathways that either promote the expression of antioxidant enzymes or reduce ROS production. These signaling pathways activate the antioxidant defense mechanisms that protect the body against both intrinsic and extrinsic oxidative stress. To conclude, Carica papaya can be incorporated into medications or supplements to help manage the health conditions driven by oxidative stress and further studies are needed to investigate the potential of its chemical components to manage various chronic diseases.


Author(s):  
Nahla S. EL Shenawy ◽  
Maha F. M. Soliman ◽  
Shimaa I. Reyad

The aim of this study was to assess the antioxidant and anti-schistosomal activities of the garlic extract (AGE) and Nigella sativa oil (NSO) on normal and Schistosoma mansoni-infected mice. AGE (125 mg kg-1, i.p.) and NSO (0.2 mg kg-1, i.p.) were administrated separately or in combination for successive 28 days, starting from the 1st day post infection (pi). All mice were sacrificed at weeks 7 pi. Hematological and biochemical parameters including liver and kidney functions were measured to assess the progress of anemia, and the possibility of the tissue damage. Serum total protein level, albumin, globulin and cholesterol were also determined. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the liver tissues as biomarkers for oxidative and reducing status, respectively. The possible effect of the treatment regimens on Schistosoma worms was evaluated by recording percentage of the recovered worms, tissue egg and oogram pattern. Result showed that, protection with AGE and NSO prevented most of the hematological and biochemical changes and markedly improved the antioxidant capacity of schistosomiasis mice compared to the infected-untreated ones. In addition, remarkable reduction in worms, tissue eggs and alteration in oogram pattern were recorded in all the treated groups. The antioxidant and antischistosomal action of AGE and NSO was greatly diverse according to treatment regimens. These data point to these compounds as promising agents to complement schistosomiasis specific treatment.


2010 ◽  
Vol 3 (4) ◽  
pp. 254-261 ◽  
Author(s):  
Mohamed M. Sayed-Ahmed ◽  
Abdulaziz M. Aleisa ◽  
Salim S. Al-Rejaie ◽  
Abdulaziz A. Al-Yahya ◽  
Othman A. Al-Shabanah ◽  
...  

Hepatocellular carcinoma accounts for about 80–90% of all liver cancer and is the fourth most common cause of cancer mortality. Although there are many strategies for the treatment of liver cancer, chemoprevention seems to be the best strategy for lowering the incidence of this disease. Therefore, this study has been initiated to investigate whether thymoquinone (TQ),Nigella sativaderived-compound with strong antioxidant properties, supplementation could prevent initiation of hepatocarcinogenesis-induced by diethylnitrosamine (DENA), a potent initiator and hepatocarcinogen, in rats. Male Wistar albino rats were divided into four groups. Rats of Group 1 received a single intraperitoneal (I.P.) injection of normal saline. Animals in Group 2 were given TQ (4 mg/kg/day) in drinking water for 7 consecutive days. Rats of Group 3 were injected with a single dose of DENA (200 mg/kg, I.P.). Animals in Group 4 were received TQ and DENA. DENA significantly increased alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and decreased reduced glutathione (GSH), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST) and catalase (CAT) activity in liver tissues. Moreover, DENA decreased gene expression of GSHPx, GST and CAT and caused severe histopathological lesions in liver tissue. Interestingly, TQ supplementation completely reversed the biochemical and histopathological changes induced by DENA to the control values. In conclusion, data from this study suggest that: (1) decreased mRNA expression of GSHPx, CAT and GST during DENA-induced initiation of hepatic carcinogenesis, (2) TQ supplementation prevents the development of DENA-induced initiation of liver cancer by decreasing oxidative stress and preserving both the activity and mRNA expression of antioxidant enzymes.


2019 ◽  
Vol 13 (2) ◽  
pp. 1364-1372 ◽  
Author(s):  
Kushboo Jan ◽  
Mudasir Ahmad ◽  
Suriya Rehman ◽  
Adil Gani ◽  
Kashif Khaqan

Antioxidants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 51 ◽  
Author(s):  
Laura Bordoni ◽  
Donatella Fedeli ◽  
Cinzia Nasuti ◽  
Filippo Maggi ◽  
Fabrizio Papa ◽  
...  

The oil obtained from the seeds of Nigella sativa L. (N. sativa), also known as black cumin, is frequently used in the Mediterranean area for its anti-inflammatory, anti-oxidant, and anti-cancer activities. The aim of the present study was to evaluate the antioxidant and anti-inflammatory properties of the oil extracted from seeds of a N. sativa cultivar produced in the Marche region of Italy, and to determine if the thymoquinone content, antioxidant properties, and biological activity would decay during storage. Cytotoxicity and anti-inflammatory properties of N. sativa oil were tested in an in vitro model of low-grade inflammation in Simpson–Golabi–Behmel syndrome human pre-adipocytes. The fresh extracted oil (FEO) contained 33% more thymoquinone than stored extracted oil (SEO), demonstrating that storage affects its overall quality. In addition, the thymoquinone content in the N. sativa oil from the Marche region cultivar was higher compared with other N. sativa oils produced in the Middle East and in other Mediterranean regions. Pro-inflammatory cytokines (e.g., Interleukin (IL)-1alpha, IL-1beta, IL-6) were differently modulated by fresh and stored extracts from N. sativa oils: FEO, containing more thymoquinone reduced IL-6 levels significantly, while SEO inhibited IL-1beta and had a higher antioxidant activity. Total antioxidant activity, reported as µM of Trolox, was 11.273 ± 0.935 and 6.103 ± 0.446 for SEO and FEO (p = 1.255 × 10−7), respectively, while mean values of 9.895 ± 0.817 (SEO) and 4.727 ± 0.324 (FEO) were obtained with the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay (p = 2.891 × 10−14). In conclusion, the oil capacity to counteract proinflammatory cytokine production does not strictly depend on the thymoquinone content, but also on other antioxidant components of the oil.


Author(s):  
NANDINI G ◽  
GOPENATH TS ◽  
NAGALAMBIKA PRASAD ◽  
MURUGESAN KARTHIKEYAN ◽  
ASHOK GNANASEKARAN ◽  
...  

Objective: The objective of the present study aimed at investigating the phytochemical and antioxidant properties of Carica papaya leaf extracts. Methods: As phytochemicals are biologically active compounds and a powerful group of plant chemicals, believed to stimulate the immune system along with antioxidants, the molecules which hinder oxidation of other molecules by the process of inhibiting or by generating the oxidizing chain reactions and preventing diseases. The total phenolic content (TPC) was determined by Folin-Ciocalteu method and total flavonoid contents (TFC) were determined aluminum chloride method and antioxidant by 2,2,1-diphenyl-1-picrylhydrazyl method. Results: The results of phytochemical screening revealed the presence of bioactive compounds such as alkaloid, carbohydrates, and amino acids and TPC and TFC varied among the different solvent extracts, in which methanolic extracts showed highest amount of phytochemicals and TPC and TFC and antioxidants compared to other solvents. Conclusion: The isolation and purification of specific bioactive compound may account as natural and promising medicines in exploration of new drug.


Sign in / Sign up

Export Citation Format

Share Document