Effect of Temperature on Mo–C Blend Composite Coating for Piston Ring Applications

2020 ◽  
Vol 12 (8) ◽  
pp. 1077-1079
Author(s):  
Ankit Tyagi ◽  
S. M. Pandey ◽  
Qasim Murtaza ◽  
R. S. Walia

The Mo–C blend composite coating was effectively developed with good surface morphology and enriched tribological properties using APS coating procedure for piston ring applications. The surface roughness values of composite coating maximum at 450 °C. The experimental result of Mo–C based coating shows that as the temperature varies from 30 to 450 °, COF decreases from 0.6 to 0.3, while specific wear rate was increased from 0.2 to 0.5 mm3/Nm. The increase in specific wear rate and decrease in COF may be attribute due to tribofilm formation on Mo blend composite coating.

2020 ◽  
Vol 34 (27) ◽  
pp. 2050243
Author(s):  
Hui Fan ◽  
Jie Jiang ◽  
Yangpei Zhao ◽  
Shankui Wang ◽  
Zhijing Li

Ni–Al2O3 composite coatings were prepared with a modified Watt’s bath by using jet electrodeposition method. As the key process parameter, current density and the addition of Al2O3 nanoparticles in electrolyte were studied about the effect on the surface morphology and co-deposition of Al2O3 nanoparticles of composite coating. The mechanical and tribological properties of the composite coating were also tested. The results show that properly increasing the current density and Al2O3 addition can increase the co-deposition of nanoparticles in the coating and promote the formation of a dense and refined coating structure. Using the optimized process parameters of current density (300 A/dm2) and Al2O3 addition (30 g/L), the co-deposition of Al2O3 in the composite coating can reach a maximum of 13.1 at.%. The hardness of the coating reaches the peak at 623 HV. The wear rate of the composite coating is also greatly reduced with optimized parameters.


1999 ◽  
Author(s):  
C. L. Muhlstein ◽  
S. M. Kurtz ◽  
C. Chui ◽  
M. Rising ◽  
A. A. Edidin

Abstract A non-contact surface topography measurement system based on white light interferometry was used to quantify the surface morphology of the UHMWPE, PTFE, HDPE, and polyacetal liners before and after wear testing. We investigated the hypothesis that the wear rate of four polymeric materials in the hip simulator was related to quantitative metrics of the surface morphology (i.e., surface roughness). Nine common roughness parameters (PV, Ra, Rrms, Rsk, Rku, Rtm, Rz, R3z, and H) were evaluated in 28 acetabular liners. The surface morphology within a given material was reproducible from insert to insert. Statistical relationships were observed between the surface roughness of the acetabular liners and the volumetric wear rate (p < 1 × 10−6). However, the power law relationships accounted for less than 50% of the variability in the data, based on r2.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rajesh Shanmugavel ◽  
Thirumalai Kumaran Sundaresan ◽  
Uthayakumar Marimuthu ◽  
Pethuraj Manickaraj

This work presents the application of hybrid approach for optimizing the dry sliding wear behavior of red mud based aluminum metal matrix composites (MMCs). The essential input parameters are identified as applied load, sliding velocity, wt.% of reinforcement, and hardness of the counterpart material, whereas the output responses are specific wear rate and Coefficient of Friction (COF). The Grey Relational Analysis (GRA) is performed to optimize the multiple performance characteristics simultaneously. The Principle Component Analysis (PCA) and entropy methods are applied to evaluate the values of weights corresponding to each output response. The experimental result shows that the wt.% of reinforcements (Q=34.9%) followed by the sliding velocity (Q=34.5%) contributed more to affecting the dry sliding wear behavior. The optimized conditions are verified through the confirmation test, which exhibited an improvement in the grey relational grade of specific wear rate and COF by 0.3 and 0.034, respectively.


2012 ◽  
Vol 610-613 ◽  
pp. 2157-2161 ◽  
Author(s):  
Nan Jiang Wu ◽  
Xiao Lv Zhou ◽  
Dao Jing Wang ◽  
Rui Jie Zhu ◽  
Huan Li

A fly ash aggregate was been developed with fly ash as main raw material, and dewatering sludge, clay and gesso as auxiliary materials in research. Then the characteristics of surface morphology, wear rate and broken rate, hydrochloric acid soluble rate, bulk density and apparent density, pore ratio and specific surface area, surface roughness were been tested. At the same time, a comparative study with the marketed ceramic ceramsite was been done. The results show that the fly ash aggregate has great advantages in performance characterization over ceramic.


2014 ◽  
Vol 1025-1026 ◽  
pp. 292-297
Author(s):  
Witsarut Penglao ◽  
Luangvaranunt Tachai ◽  
Boonrat Lohwongwatana

Pin-on-disk technique was used as a tool to study the tribological properties of contacting surfaces of alumina-titanium carbide composite material and diamond slicing blade. Conditions for testing are linear sliding speed between 0.2 and 0.4 m/s under applied load of 10 N and sliding distance up to 5000 m. The physical properties of both specimens which are mass loss, surface roughness and morphology of worn surface are investigated. The effect of linear sliding speed is analyzed in term of friction coefficient, surface roughness, and specific wear rate. It was found that, at initial state of wear, when sliding distant is less than 1000 m, the wear is severe, as seen by high values of specific wear rate and large fluctuation of friction coefficient. Worn surface of AlTiC is rougher than as-received condition. For a longer sliding distant, milder abrasion is found, as seen by the lower specific wear rate, and less fluctuation of friction coefficient, which produces worn AlTiC surface which is smoother than the as-received condition.


Author(s):  
R H Dixon ◽  
P Kidd ◽  
P J Goodhew

Thick relaxed InGaAs layers grown epitaxially on GaAs are potentially useful substrates for growing high indium percentage strained layers. It is important that these relaxed layers are defect free and have a good surface morphology for the subsequent growth of device structures.3μm relaxed layers of InxGa1-xAs were grown on semi - insulating GaAs substrates by Molecular Beam Epitaxy (MBE), where the indium composition ranged from x=0.1 to 1.0. The interface, bulk and surface of the layers have been examined in planar view and cross-section by Transmission Electron Microscopy (TEM). The surface morphologies have been characterised by Scanning Electron Microscopy (SEM), and the bulk lattice perfection of the layers assessed using Double Crystal X-ray Diffraction (DCXRD).The surface morphology has been found to correlate with the growth conditions, with the type of defects grown-in to the layer (e.g. stacking faults, microtwins), and with the nature and density of dislocations in the interface.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110118
Author(s):  
Zenan Chu ◽  
Tao Wang ◽  
Qiang He ◽  
Kai Zhao

To solve the problems of low processing efficiency and poor glass surface quality when using rare earth polishing powder to grind super-hard K9 glass. The potential, phase structure, surface morphology, and particle size distribution of the nano-rare earth polishing powder were characterized. Compare the evaluation indexes such as polishing efficiency, surface morphology, and contact angle after the polishing process is changed. The results of the comparative study show that the average surface roughness of the glass after heating ultrasonic polishing process is 0.9064 nm, the polishing rate reaches 0.748 μm/min, the average surface roughness of the glass without heating ultrasonic polishing process is 1.3175 nm, and the polishing rate reaches 0.586 μm/min, the ultrasonic assisted polishing process is superior to the conventional polishing process. The heating ultrasonic method provides experimental basis for precise and rapid processing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


Sign in / Sign up

Export Citation Format

Share Document