Efficient Treatment of Atherosclerosis by Dexamethasone Acetate and Rapamycin Co-Loaded mPEG-DSPE Calcium Phosphate Nanoparticles

2020 ◽  
Vol 16 (6) ◽  
pp. 810-826
Author(s):  
Xianghong Luo ◽  
Hao Fu ◽  
Chaoqun Xu ◽  
Yang Dong ◽  
Zhihua Wu ◽  
...  

Atherosclerosis (AS) is one of the leading causes of vascular disease, producing high morbidity and mortality in many countries. Autophagy plays an important role when cells are facing serious circumstances, such as oxidative stress induced by Ox-LDL (oxidized low-density lipoprotein). Recent studies have revealed that DEX (dexamethasone acetate) and RAPA (rapamycin) exhibit efficient AS therapeutic ability by protecting endothelial cells and killing foam cells, respectively. Herein, we hypothesize that combining DEX and RAPA together in a specific nanocarrier system can achieve better AS therapy while limiting harmful effects. As a proof of concept, DEX and RAPA coloaded mPEG2k-DSPE calcium phosphate (CaP) nanoparticles (DR-NPs) were prepared by using a biomineralization method. DR-NPs increased HUVEC survival and induced foam cell apoptosis in vitro, which were correlated with autophagy activity. DR-NPs efficiently aggregated at AS plaques in the carotid artery and abdominal artery in ApoE– / – mice 24 h after i.v. injection. Moreover, DR-NPs exhibited excellent plaque regression ability, with smaller necrotic cores and lipid core areas observed after in vivo treatment. Furthermore, the function of vascular endothelial cells was largely promoted, as evidenced by the dramatically decreased expression levels of adhesion factors, such as MMP-2, MMP-9 and ICAM-1. Consequently, DR-NPs can act as an effective AS therapeutic agent and broaden the AS therapeutic approach by inducing autophagy.

1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


2018 ◽  
Vol 47 (1) ◽  
pp. 453-469 ◽  
Author(s):  
Ying Yang ◽  
Hui Luo ◽  
Can Zhou ◽  
Rongyi Zhang ◽  
Si Liu ◽  
...  

Objective This study aimed to examine regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA (miRNA)-4306 transfer Methods Whole blood samples (12 mL) were collected from 53 patients, and miR-4306 levels in extracellular vesicles (EVs) were analyzed by reverse transcription-polymerase chain reaction. Human coronary artery vascular endothelial cells (HCAECs) and human monocyte-derived macrophages (HMDMs) were transfected with a scrambled oligonucleotide, an miR-4306 mimic, or an anti-miR-4306 inhibitor. The direct effect of miR-4306 on the target gene was analyzed by a dual-luciferase reporter assay. Results EV-contained miR-4306 released from HMDMs was significantly upregulated in coronary artery disease. Oxidized low-density lipoprotein (ox-LDL)-stimulated HMDM-derived EVs inhibited proliferation, migration, and angiogenesis abilities of HCAECs in vitro. However, ox-LDL-stimulated HCAEC-derived EVs enhanced lipid formation of HMDMs. The possible mechanism of these findings was partly due to EV-mediated miR-4306 upregulation of the Akt/nuclear factor kappa B signaling pathway. Conclusions Paracrine cellular crosstalk between HCAECs and HMDMs probably supports the pro-atherosclerotic effects of EVs under ox-LDL stress.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mark F Sabbagh ◽  
Jeremy Nathans

Vascular endothelial cells (ECs) derived from the central nervous system (CNS) variably lose their unique barrier properties during in vitro culture, hindering the development of robust assays for blood-brain barrier (BBB) function, including drug permeability and extrusion assays. In previous work (Sabbagh et al., 2018) we characterized transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs. In this report, we compare transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs versus mouse CNS ECs in short-term in vitro culture. We observe that standard culture conditions are associated with a rapid and selective loss of BBB transcripts and chromatin features, as well as a greatly reduced level of beta-catenin signaling. Interestingly, forced expression of a stabilized derivative of beta-catenin, which in vivo leads to a partial conversion of non-BBB CNS ECs to a BBB-like state, has little or no effect on gene expression or chromatin accessibility in vitro.


1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1017 ◽  
Author(s):  
Zhiyong Lei ◽  
Timothy D. Klasson ◽  
Maarten M. Brandt ◽  
Glenn van de Hoek ◽  
Ive Logister ◽  
...  

A common feature of tumorigenesis is the upregulation of angiogenesis pathways in order to supply nutrients via the blood for the growing tumor. Understanding how cells promote angiogenesis and how to control these processes pharmaceutically are of great clinical interest. Clear cell renal cell carcinoma (ccRCC) is the most common form of sporadic and inherited kidney cancer which is associated with excess neovascularization. ccRCC is highly associated with biallelic mutations in the von Hippel–Lindau (VHL) tumor suppressor gene. Although upregulation of the miR-212/132 family and disturbed VHL signaling have both been linked with angiogenesis, no evidence of a possible connection between the two has yet been made. We show that miRNA-212/132 levels are increased after loss of functional pVHL, the protein product of the VHL gene, in vivo and in vitro. Furthermore, we show that blocking miRNA-212/132 with anti-miRs can significantly alleviate the excessive vascular branching phenotype characteristic of vhl−/− mutant zebrafish. Moreover, using human umbilical vascular endothelial cells (HUVECs) and an endothelial cell/pericyte coculture system, we observed that VHL knockdown promotes endothelial cells neovascularization capacity in vitro, an effect which can be inhibited by anti-miR-212/132 treatment. Taken together, our results demonstrate an important role for miRNA-212/132 in angiogenesis induced by loss of VHL. Intriguingly, this also presents a possibility for the pharmaceutical manipulation of angiogenesis by modulating levels of MiR212/132.


2003 ◽  
Vol 284 (6) ◽  
pp. H1978-H1984 ◽  
Author(s):  
M. Ursula Norman ◽  
Shane B. Reeve ◽  
Vincent Dive ◽  
A. Ian Smith ◽  
Rebecca A. Lew

The closely related metalloendopeptidases EC 3.4.24.15 (EP24.15; thimet oligopeptidase) and 24.16 (EP24.16; neurolysin) cleave a number of vasoactive peptides such as bradykinin and neurotensin in vitro. We have previously shown that hypotensive responses to bradykinin are potentiated by an inhibitor of EP24.15 and EP24.16 (26), suggesting a role for one or both enzymes in bradykinin metabolism in vivo. In this study, we have used selective inhibitors that can distinguish between EP24.15 and EP24.16 to determine their activity in cultured endothelial cells (the transformed human umbilical vein endothelial hybrid cell line EA.hy926 or ovine aortic endothelial cells). Endopeptidase activity was assessed using a specific quenched fluorescent substrate [7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-d-Lys(2,4-dinitrophenyl)], as well as the peptide substrates bradykinin and neurotensin (assessed by high-performance liquid chromatography with mass spectroscopic detection). Our results indicate that both peptidases are present in endothelial cells; however, EP24.16 contributes significantly more to substrate cleavage by both cytosolic and membrane preparations, as well as intact cells, than EP24.15. These findings, when coupled with previous observations in vivo, suggest that EP24.16 activity in vascular endothelial cells may play an important role in the degradation of bradykinin and/or other peptides in the circulation.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 261-261
Author(s):  
Selcuk Sozer ◽  
Takefumi Ishii ◽  
Wei Zhang ◽  
Jiapeng Wang ◽  
Mingjiang Xu ◽  
...  

Abstract Patients with myeloproliferative disorders (MPD) are at a high risk of developing thrombotic events. We hypothesize that one of the contributory factors to this thrombotic tendency is the involvement of vascular endothelial cells (EC) by the malignant process. In vitro and in vivo assays were used to determine the involvement of EC in patients with MPD. Endothelial progenitor cells (EPC) were assayed from the peripheral blood (PB) mononuclear cells (MNCs) of 3 normal controls (NC) and 16 patients with MPD (12 polycythemia vera (PV), 4 primary myelofibrosis (PMF). MNC were cultured for 2 days in EC growth media on fibronectin(FN)-coated plates. The non-adherent cells were then harvested and transferred to a secondary FN-coated plate for additional 5–14 days. EC colonies were identified by their morphological appearance. The colonies were plucked and analyzed for PECAM-1(CD31), VE-Cadherin(CD144), VEGFR-2, vWF, Endoglin(CD105), ULEX-1, CD45, CD14 by flow cytometry and acetylated LDL(Ac-ADL) uptake. EC colonies were CD31+CD144+VEGFR2+ULEX-1+vWF+CD105+CD45+CD14+ and capable of taking up Ac-LDL and when exposed to TNF-α and IL-1β, expressing ICAM(CD54) and E-selectin(CD62e). MPD MNC formed fewer numbers of EC colonies than normal MNC (31.1±34.2 vs 78.8±28.9; p<0.01) and required more prolonged periods of culture (14 vs 5days). MPD EC colonies were also analyzed for JAK2V617F(JAK2VF) by nested-PCR. 74.6% of MPD EC colonies were homozygous(homo) JAK2VF, 14.9% were heterozygous(hetero) JAK2VF and 10.4% were wild type(wt) JAK2. Interestingly, MNCs from JAK2VF−MPD(148±47) formed greater numbers of EC colonies than NC MNC (78.8±28.9; p≤0.01). MNC from patients with a high burden of JAK2VF alleles (10.3±18.5; p<0.01) formed fewer EC colonies than NC or patients with a low burden of JAK2VF (65.9±28.15; p≤0.01). These EPC assayed in vitro which produced cells with both myeloid and endothelial markers are likely due either to contamination with JAK2VF myeloid cells or the result of the transdifferentiation of myeloid progenitor cells into EC (Bailey A, et al. PNAS.2006,103:13156). The inverse correlation between the JAK2VF burden and the ability of MPD MNC to form EC colonies is possibly a consequence of the increased sensitivity of EC to apoptosis due to the constitutive activation of JAK2 (Neria F, et al. Am J Physiol Cell Physiol.2007, 292:1123). In order to assay for more primitive EPC, 2 cord blood, and 16 JAK2VF+ MPD CD34+ (10 PV, 6 PMF) cells were transplanted into sublethally irradiated NOD/SCID mice. After 8 weeks, EC-rich organs (heart, lung, liver, vessels) were harvested, single cell suspensions were positively selected for either human(h) CD31+or hCD144+ cells by immunomagnetic cell sorting and analyzed for hVEGFR2, CD144, vWF, CD45, CD14 mRNA expression and JAK2VF. These CD31+or CD144+ cells contained transcripts for CD144, vWF, VEGFR2 but not CD45 and CD14. In 77.7% of the cases the hCD31+ or hCD144+ cells were homo JAK2VF, 5.5% were hetero JAK2VF and 16.6% were wt JAK2 and these CD31+or CD144+ cells composed ≤1% of the cells within the respective tissues. hCD144+ cells were also cultured with EC growth media for 7 days and displayed EC morphology and were shown to contain JAK2VF+ cells. These CD31+CD144+JAK2VF+CD14−CD45−cells likely represent the progeny of a malignant EPC which is distinct from an HSC. The involvement of EC by the malignant process in MPD might contribute to the development of thrombosis in MPD.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenjing Li ◽  
Xiaoyan Yang ◽  
Shasha Xing ◽  
Fang Bian ◽  
Wanjing Yao ◽  
...  

Oxidized low density of lipoprotein (oxLDL) is the major lipid found in atherosclerotic lesion and elevated plasma oxLDL is recognized to be a risk factor of atherosclerosis. Whether plasma oxLDL could be transported across endothelial cells and initiate atherosclerotic changes remains unknown. In an establishedin vitrocellular transcytosis model, the present study found that oxLDL could traffic across vascular endothelial cells and further that the regulation of endogenous ceramide production by ceramide metabolizing enzyme inhibitors significantly altered the transcytosis of oxLDL across endothelial cells. It was found that acid sphingomyelinase inhibitor, desipramine (DES), andde novoceramide synthesis inhibitor, myriocin (MYR), both decreasing the endogenous ceramide production, significantly inhibited the transcytosis of oxLDL. Ceramidase inhibitor, N-oleoylethanolamine (NOE), and sphingomyelin synthase inhibitor, O-Tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609), both increasing the endogenous ceramide production, significantly upregulated the transcytosis of oxLDL.In vivo, injection of fluorescence labeled oxLDL into mice body also predisposed to the subendothelial retention of these oxidized lipids. The observations provided in the present study demonstrate that endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes the initiating step of atherosclerosis—the subendothelial retention of lipids in vascular wall.


Sign in / Sign up

Export Citation Format

Share Document