Mechanism of Circular RNA RAD23B for Regulating Glycolysis and Proliferation of Ovarian Cancer Cells by Targeting MicroRNA-519b-3p

2021 ◽  
Vol 11 (6) ◽  
pp. 1078-1083
Author(s):  
Jinmei Yu ◽  
Yunting An ◽  
Meiyan Zou ◽  
Xia Li ◽  
Xiaoyuan Dong

We investigated whether circRAD23B regulates glycolysis and proliferation of ovarian cancer cells by targeting miRNA-519b-3p. circRAD23B expression in ovarian cancer tissues was significantly higher than that in paracancerous tissues, and miRNA-519b-3p expression in ovarian cance tissues was significantly lower than that in paracancerous tissues (P < 0.05). Transfection sicircRAD23B or miRNA-519b-3p mimics can greatly attenuate cell viability, glucose consumption, lactic acid level, and CyclinD1 protein level (P < 0.05), and increase p21 protein level (P < 0.05). Double luciferase reporter experiment confirmed that circRAD23B could function as a miRNA-519b-3p sponge molecule. Co-transfection of si-circRAD23B and anti-miRNA-519b-3p could greatly decrease cell viability, glucose consumption, lactic acid level, and CyclinD1 protein level (P < 0.05), and increase p21 protein level by comparison with si-circRAD23B+anti-miRNA-NC group (P < 0.05). Inhibiting circRAD23B expression can, in turn, inhibit glycolysis and the proliferation of ovarian cancer cells by up-regulating miRNA-519b-3p expression.

2020 ◽  
Vol 19 (2) ◽  
pp. 206-210
Author(s):  
Feng Chen ◽  
Bei Zhang

Lupeol exhibits multiple pharmacological activities including, anticancerous, anti-inflammatory, and antioxidant. The aim of this study was to explore the anticancerous activity of lupeol on ovarian cancer cells and examine its mechanism of action. To this end, increasing concentrations of lupeol on cell viability, cell cycle, and apoptosis in Caov-3 cells were evaluated. Lupeol inhibited cell viability, induced G1 phase arrest in cell cycle, increased cell apoptosis, and inhibited the ratio of phospho-Akt/protein kinase B and phospho-mammalian target of rapamycin/mammalian target of rapamycin. In conclusion, these data suggest that lupeol may play a therapeutic role in ovarian cancer.


2020 ◽  
Vol 44 (35) ◽  
pp. 14928-14935
Author(s):  
Carolina G. Oliveira ◽  
Luciana F. Dalmolin ◽  
R. T. C. Silva ◽  
Renata F. V. Lopez ◽  
Pedro I. S. Maia ◽  
...  

The encapsulation process of the PdII complex [PdCl(PPh3)(PrCh)], a promising cytotoxic agent on ovarian cancer cells, in PLGA polymer was studied. The cytotoxicity results showed that the formulation led to a significant reduction of the ovarian cell viability (80% at 1 μM).


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
So Young Yoon ◽  
Soo Jung Park ◽  
Yoon Jung Park

Abstract Objectives The study was aimed to determine anticancer effects of Cordyceps militaris extract (CME) and its major bioactive compound, cordycepin, in human ovarian cancer cells, and to identify their putative molecular mechanism mediated by adenosine receptors (ADORAs). Methods CME was prepared in 50% ethanol solution. LC-MS was used for quantification and Q-TOF MS for qualifying bioactive compounds in CME. MTT assay was performed for cell viability in A2780, SKOV-3, TOV112D, and OVCAR-3 human ovarian cancer cell lines. cAMP response element (CRE)-luciferase reporter gene assays were used to determine whether antitumorigenic effect of CME/cordycepin is based on adenosine derivatives. Additionally, the involvement of ADORA signaling pathway was measured using with ADORA2A antagonist SCH 58261 and ADORA2B antagonist PSB 603. Results Cordycepin concentrations of CME was 21.8%. CME was effective to reduce cell viability in A2780 and OVCAR-3 with IC50 115.2 μg/ml and 155.94 μg/ml respectively, while SKOV-3 and TOV112D were relatively resistant to CME. cAMP production was significantly increased by treatment with cordycepin and, lesser extent, with CME. Among the four types of ADORAs, ADORA2A and 2B showed relatively higher expression levels in ovarian cancer cells. The cAMP production by CME was ameliorated by PSB 603, not SCH 58261, treatment. Conclusions CME and cordycepin have anticancer effects in human ovarian cancer cells via ADORA2B-cAMP pathway. Funding Sources NRF of Korea (2017R1D1A1B03034936 & 22A20130012143) and Health Fellowship Foundation.


2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


2021 ◽  
Vol 22 (19) ◽  
pp. 10255
Author(s):  
Woo Yeon Hwang ◽  
Wook Ha Park ◽  
Dong Hoon Suh ◽  
Kidong Kim ◽  
Yong Beom Kim ◽  
...  

Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our study aimed to identify the effects and mechanism of DFMO in epithelial ovarian cancer cells using SKOV-3 cells. Treatment with DFMO resulted in a significantly reduced cell viability in a time- and dose-dependent manner. DFMO treatment inhibited the activity and downregulated the expression of ODC in ovarian cancer cells. The reduction in cell viability was reversed using polyamines, suggesting that polyamine depletion plays an important role in the anti-tumor activity of DFMO. Additionally, significant changes in Bcl-2, Bcl-xL, Bax protein levels, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase were observed, indicating the apoptotic effects of DFMO. We also found that the effect of DFMO was mediated by AP-1 through the activation of upstream JNK via phosphorylation. Moreover, DFMO enhanced the effect of cisplatin, thus showing a possibility of a synergistic effect in treatment. In conclusion, treatment with DFMO alone, or in combination with cisplatin, could be a promising treatment for ovarian cancer.


2020 ◽  
Author(s):  
Fenhong Kang ◽  
Yanlong Wang ◽  
Yaping Luo ◽  
Yongjun Zhang

Abstract Background: The cancer cell metastasis and the acquisition of chemotherapy resistance remain huge challenge for ovarian cancer treatment. Previously, N-myc downstream-regulated gene 2 (NDRG2) serves as a tumor suppressor for many cancers. Here, we attempted to investigate the specific roles of NDRG2 in ovarian cancer. Methods: The expression levels of NDRG2 were detected by qRT-PCR or Immunoblotting. CCK-8 assay was employed to examine the cell viability of ovarian cancer cells. The colony formation ability was determined by colony formation assay. Flow cytometry analyses were performed to detect the cell apoptosis and cell cycle. Xenograft tumor assay was performed to detect the in vivo function of NDRG2. Results: We revealed that NDRG2 mRNA expression and protein levels were downregulated within both ovarian cancer tissues and cell lines. The overexpression of NDRG2 dramatically inhibited the cell viability and colony formation and tumor growth, whereas promoted the cell apoptosis, cell cycle arrest in G1 phase within ovarian cancer cells. More importantly, NDRG2 overexpression significantly enhanced the suppressive roles of cisplatin (DDP) in ovarian cancer cell viability. On the contrary, NDRG2 silence exerted opposing effects on ovarian cancer cells. Conclusions: In summary, we provide a solid experimental basis demonstrating the tumor-suppressive effects of NDRG2 in inhibiting the cell proliferation, enhancing the cell apoptosis, eliciting the cell cycle arrest in G1 phase, and promoting the suppressive effects of DDP on the viability of ovarian cancer cells. NDRG2 administration presents a potent adjuvant treatment for ovarian cancer therapy.


2020 ◽  
Author(s):  
Mi Ju Kim

Abstract Background: fascin is an actin-binding protein and highly expressed in ovarian cancer cells. It is associated with metastasis of cancer and may be a useful prognostic factor. Anticancer activity of curcumin is related to its effect on several signaling mechanisms. Although there have been many reports regarding the anticancer properties of curcumin, its inhibitory effects on migration and invasion of ovarian cancer cells, particularly in the context of fascin expression, have not been reported. The purpose of this study was to investigate the effect of curcumin on fascin expression in ovarian cancer cells and to propose a possible mechanism for the anticancer activity of curcumin through reduced fascin expression. Methods: SKOV3, human epithelial ovary cancer cell line, was cultured with curcumin at various dose and duration. The fascin was quantified using cell viability test and Western blot. To determine the effect of curcumin on the upstream pathway of fascin expression, the signal transducer and activator of transcription 3 (STAT3) was analyzed by sandwich-ELISA. Attachment assay, migration assay and invasion assay were analyzed to approve the change of cellular invasiveness of ovary cancer after curcumin. To determine the morphological changes of ovarian cancer cells by curcumin, immunofluorescence was performed. Results: MTS assays showed that cell viability was different at various concentration of curcumin, and as concentration increased, cell viability tended to decrease. Curcumin appears to suppress fascin expression, even with a minimal concentration and short exposure time. Also, curcumin may suppress fascin expression in ovarian cancer cells through STAT3 downregulation. The attachment assay, migration assay and invasion assay of the ovarian cancer cells exhibited a statistically significant decrease. Immunofluorescence revealed a change of cell shape from a typical form of uninfluenced cells to a more polygonal appearance, with a significant reduction in filopodia formation. Conclusions: Curcumin reduces fascin expression through JAK/STAT3 pathway inhibition, which interferes with the cellular interactions essential for the metastasis and recurrence of ovarian cancer cells. Higher curcumin concentrations and longer exposure times concomitantly decreased fascin expression.


Chemotherapy ◽  
2018 ◽  
Vol 63 (5) ◽  
pp. 262-271 ◽  
Author(s):  
Yajie Cui ◽  
Li Qin ◽  
Defu Tian ◽  
Ting Wang ◽  
Lijing Fan ◽  
...  

Ovarian cancer is one of the deadliest gynecological malignancies in women. Chemoresistance has been a major obstacle for ovarian cancer treatment. Zinc finger E-box-binding homeobox 1 (ZEB1) is an important regulator of tumor development in various types of cancer. Abnormal expression of SLC3A2 (CD98hc), a type 2 transmembrane cell surface molecule, has been described in several cancers. This study was designed to investigate the role of ZEB1 and SLC3A2 in the chemoresistance to cisplatin in ovarian cancer cells. We found that ZEB1 was increased in cisplatin-resistant SKOV3/DPP cells. Downregulation of ZEB1 significantly decreased cell viability in response to cisplatin, increased cis­platin-induced apoptosis, and decreased migration and invasion in the presence of cisplatin. In addition, downregulation of ZEB1 decreased the volume and weight of implanted tumors. SLC3A2 was decreased in cisplatin-resistant SKOV3/DPP cells. Upregulation of SLC3A2 significantly decreased cell viability in response to cisplatin, increased cisplatin-induced apoptosis, and decreased migration and invasion in the presence of cisplatin. Moreover, upregulation of SLC3A2 decreased the volume and weight of implanted tumors. Downregulation of ZEB1 resulted in a significant increase of SLC3A2 expression. Moreover, downregulation of SLC3A2 significantly inhibited ZEB1 knockdown-mediated inhibition of cisplatin-resistance. ZEB1-mediated regulation of SLC3A2 was involved in the chemoresistance to cisplatin in ovarian cancer cells. Overall, we provide new insights into the mechanism of chemoresistance to cisplatin in ovarian cancer cells. ZEB1/SLC3A2 may be promising therapeutic targets for enhancement of the sensitivity of ovarian cancer cells to cisplatin-mediated chemotherapy.


2018 ◽  
Vol 45 (6) ◽  
pp. 2548-2559 ◽  
Author(s):  
Yuanyuan Zhou ◽  
Xia Zheng ◽  
Jiaojiao Lu ◽  
Wei Chen ◽  
Xu Li ◽  
...  

Background/Aims: The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. Methods: microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Results: Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host gene. 20(S)-Rg3 inhibited DNMT3A expression while exerted insignificant effect on DNMT1, DNMT3B and TET1-3. 20(S)-Rg3 reversed DNMT3A-mediated methylation in the promoter of the host gene of miR-532-3p, and thus elevated miR-532-3p level followed by suppression of HK2 and PKM2 expression, glucose consumption and lactate production. Conclusions: 20(S)-Rg3 modulated microRNAs to exert the anti-tumor effect in ovarian cancer. 20(S)-Rg3 lessened the DNMT3A-mediated methylation and promoted the suppression of miR-532-3p on HK2 to antagonize the Warburg effect of ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document