Extensive Support System and Knowledge Base for Improvised Geoponics Using Convolutional Neural Network Based Deep Learning

2020 ◽  
Vol 17 (8) ◽  
pp. 3437-3443
Author(s):  
S. Visnu Dharsini ◽  
Arpan Sarkar ◽  
Aritra Paul ◽  
Pranab Kumar Shukla

Farming can either be envisaged as a complex multistep process or a linear and recursive feedback loop. In both cases, it requires great effort and cost to produce crops initially. Farmers have extensive knowledge about the crop they are growing, and they must know about the product, but sometimes it so happens that the farmers do not have at par and updated knowledge about the current growth form of the product. The loss per hectare of cultivation has been exponentially increasing over time due to extensive crop damages and failures. Our model suggests an overall algorithm to provide wholesome support and information to the producer may that be a farmer or someone who wishes to take up farming as a hobby. The CNN based model identifies the plant using fine-grain details like location data, timestamp, and state of harvest. Alongside the identification model, a similar model runs parallelly to identify any diseases that might be visible and also provides necessary steps to get rid of the same. Hence providing a safe and low-risk path towards mass producing a certain crop.

2013 ◽  
Vol 9 (2) ◽  
pp. 139-155 ◽  
Author(s):  
Pedro M. P. Rosa ◽  
Joel J. P. C. Rodrigues ◽  
Filippo Basso

In the last years, information flood is becoming a common reality, and the general user, hit by thousands of possible interesting information, has great difficulties identifying the best ones, that can guide him in his/her daily choices, like concerts, restaurants, sport gatherings, or culture events. The current growth of mobile smartphones and tablets with embedded GPS receiver, Internet access, camera, and accelerometer offer new opportunities to mobile ubiquitous multimedia applications that helps gathering the best information out of an always growing list of possibly good ones. This paper presents a mobile recommendation system for events, based on few weighted context-awareness data-fusion algorithms to combine several multimedia sources. A demonstrative deployment were utilized relevance like location data, user habits and user sharing statistics, and data-fusion algorithms like the classical CombSUM and CombMNZ, simple, and weighted. Still, the developed methodology is generic, and can be extended to other relevance, both direct (background noise volume) and indirect (local temperature extrapolated by GPS coordinates in a Web service) and other data-fusion techniques. To experiment, demonstrate, and evaluate the performance of different algorithms, the proposed system was created and deployed into a working mobile application providing real time awareness-based information of local events and news.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
Harry Schaefer ◽  
Bruce Wetzel

High resolution 24mm X 36mm positive transparencies can be made from original black and white negatives produced by SEM, TEM, and photomicrography with ease, convenience, and little expense. The resulting 2in X 2in slides are superior to 3¼in X 4in lantern slides for storage, transport, and sturdiness, and projection equipment is more readily available. By mating a 35mm camera directly to an enlarger lens board (Fig. 1), one combines many advantages of both. The negative is positioned and illuminated with the enlarger and then focussed and photographed with the camera on a fine grain black and white film.Specifically, a Durst Laborator 138 S 5in by 7in enlarger with 240/200 condensers and a 500 watt Opale bulb (Ehrenreich Photo-Optical Industries, Inc., New York, NY) is rotated to the horizontal and adjusted for comfortable eye level viewing.


Author(s):  
M. Iwatsuki ◽  
Y. Kokubo ◽  
Y. Harada ◽  
J. Lehman

In recent years, the electron microscope has been significantly improved in resolution and we can obtain routinely atomic-level high resolution images without any special skill. With this improvement, the structure analysis of organic materials has become one of the interesting targets in the biological and polymer crystal fields.Up to now, X-ray structure analysis has been mainly used for such materials. With this method, however, great effort and a long time are required for specimen preparation because of the need for larger crystals. This method can analyze average crystal structure but is insufficient for interpreting it on the atomic or molecular level. The electron microscopic method for organic materials has not only the advantage of specimen preparation but also the capability of providing various information from extremely small specimen regions, using strong interactions between electrons and the substance. On the other hand, however, this strong interaction has a big disadvantage in high radiation damage.


Author(s):  
P. J. Lee ◽  
D. C. Larbalestier

Several features of the metallurgy of superconducting composites of Nb-Ti in a Cu matrix are of interest. The cold drawing strains are generally of order 8-10, producing a very fine grain structure of diameter 30-50 nm. Heat treatments of as little as 3 hours at 300 C (∼ 0.27 TM) produce a thin (1-3 nm) Ti-rich grain boundary film, the precipitate later growing out at triple points to 50-100 nm dia. Further plastic deformation of these larger a-Ti precipitates by strains of 3-4 produces an elongated ribbon morphology (of order 3 x 50 nm in transverse section) and it is the thickness and separation of these precipitates which are believed to control the superconducting properties. The present paper describes initial attempts to put our understanding of the metallurgy of these heavily cold-worked composites on a quantitative basis. The composite studied was fabricated in our own laboratory, using six intermediate heat treatments. This process enabled very high critical current density (Jc) values to be obtained. Samples were cut from the composite at many processing stages and a report of the structure of a number of these samples is made here.


Author(s):  
K. Ogura ◽  
T. Suzuki ◽  
C. Nielsen

In spite of the complicated specimen preparation, Transmission Electron Microscopes (TEM) have traditionally been used for the investigation of the fine grain structures of sintered ceramics. Scanning Electron Microscopes (SEM) have not been used much for the same purpose as TEM because of poor results caused by the specimen charging effect, and also the lack of sufficient resolution. Here, we are presenting a successful result of high resolution imaging of sintered alumina (pure Al2O3) using the Specimen Heated and Electron Beam Induced Conductivity (SHEBIC) method, which we recently reported, in an ultrahigh resolution SEM (UHR-SEM). The JSM-6000F, equipped with a Field Emission Gun (FEG) and an in-lens specimen position, was used for this application.After sintered Al2O3 was sliced into a piece approximately 0.5 mm in thickness, one side was mechanically polished to get a shiny plane for the observation. When the observation was started at 20 kV, an enormous charging effect occured, and it was impossible to obtain a clear Secondary Electron (SE) image (Fig.1).


Author(s):  
Robert P. Apkarian

A multitude of complex ultrastructural features are involved in endothelial cell (EC) gating and sorting of lipid through capillaries and into steroidogenic cells of the adrenal cortex. Correlative microscopy is necessary to distinguish the structural identity of features involved in specific cellular pathways. In addition to diaphragmed fenestrae that frequently appear in clusters, other 60-80 nm openings; plasmalemma vesicles (PV), channels and pockets fitted with diaphragms of the same dimension, coexist on the thin EC surface. Non-diaphragmed coated pits (CP) (100-120 nm) involved in receptor mediated endocytosis were also present on the EC membrane. The present study employed HRSEM of cryofractured and chromium coated specimens and low voltage HRSTEM of 80 nm thick LX-112 embedded sections stained with 2.0% uranyl acetate. Both preparations were imaged at 25 kV with a Topcon DS-130 FESEM equipped with in-lens stage and STEM detector.HRSEM images of the capillary lumen coated with a lnm continuous fine grain Cr film, provided the ability to scan many openings and resolve (SE-I contrast) the fine structure of diaphragm spokes and central densities (Fig. 1).


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Joachim Gerich ◽  
Roland Lehner

Although ego-centered network data provide information that is limited in various ways as compared with full network data, an ego-centered design can be used without the need for a priori and researcher-defined network borders. Moreover, ego-centered network data can be obtained with traditional survey methods. However, due to the dynamic structure of the questionnaires involved, a great effort is required on the part of either respondents (with self-administration) or interviewers (with face-to-face interviews). As an alternative, we will show the advantages of using CASI (computer-assisted self-administered interview) methods for the collection of ego-centered network data as applied in a study on the role of social networks in substance use among college students.


Sign in / Sign up

Export Citation Format

Share Document