Capillary Effect of Multi-Walled Carbon Nanotubes Suspension in Composite Processing

2008 ◽  
Vol 8 (4) ◽  
pp. 1669-1678
Author(s):  
Zhihang Fan ◽  
Suresh G. Advani

Carbon nanotubes (CNTs) do have the potential to improve the interlaminar shear strength (ILSS) of composites if they can be successfully integrated into the matrix as it infuses into the fiber preform. The infusion under capillary action of Multi-Walled Carbon Nanotubes (MWNT)/Epoxy suspension with tubes of length 0.3∼1 μm in glass fiber bundles containing pores of the order of 5 nm∼100 μm was investigated. The influence of parameters such as suspension concentration, viscosity, porous media architecture, surface tension and contact angle were explored. It was found that filtering of the suspension is a major challenge for uniform infusion for concentrations beyond 0.5% MWNT by weight. This is even truer for fiber bundles that are compacted. Hence for successful manufacturing, new infusion techniques that rely on fabrics of high permeability will have to be developed to fabricate such nanocomposites.

2011 ◽  
Vol 239-242 ◽  
pp. 2655-2658
Author(s):  
Heng Feng Li ◽  
Guo Wen He ◽  
Jun Li ◽  
Jun Chen ◽  
Jiang Cong Chen

A series of polyimide composites with various mass fractions of multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization. MWNTs were treated with an acid mixture and sulfoxide chloride in turn to increase the chemical compatibility of carbon nanotubes with the polyimide matrix. The modified MWNTs are dispersed homogeneously in the matrix while the structure of the PI and MWNTs structures are stable in the preparation process. The composite films hold preferable thermal stability as same as the pure PI. The dielectric constants of the composites decreased with the increasing frequency and increase sharply with the adding of MWNTs.


2019 ◽  
Vol 31 (9) ◽  
pp. 1943-1948
Author(s):  
Priyabrata Mohanty ◽  
Tapan Kumar Bastia ◽  
Dibakar Behera ◽  
Shivkumari Panda

This work represents the preparation and characterization of some unique properties of vinyl ester (VE) and unsaturated polyester (UPE) blend based nanocomposites by introducing biopolymer chitosan grafted multi-walled carbon nanotubes (MWCNTs). Initially, surface grafting of MWCNTs with chitosan was performed by utilizing glutaraldehyde as a cross linking reagent through covalent deposition method and are successfully characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy(SEM). Then 50:50 wt % of vinyl ester and unsaturated polyester blend was prepared by simple sonication method. Three different specimens of VE/UPE/CS-g-MWCNTs nanocomposites were fabricated with addition of 1, 3 and 5 wt % of functionalized bionanofiller. Chitosan grafting of MWCNTs offered enhanced properties to the nanocomposites suggesting homogeneous distribution of the nanofiller in the matrix with minimum corrosion and swelling properties. 3 wt % of functionalized bionanofiller loading showed superior essential characteristics and after that the properties reduced may be due to the nucleating tendency of the nanofiller particles.


2017 ◽  
Vol 52 (8) ◽  
pp. 1045-1060 ◽  
Author(s):  
Majid TabkhPaz ◽  
Dong-Yeob Park ◽  
Patrick C Lee ◽  
Ron Hugo ◽  
Simon S Park

In this study, new composite coatings are fabricated and investigated for their applications as the metal coating. The studied coatings consist of two-layered composites with various nanoparticulates as fillers in a polymeric matrix (styrene acrylic). The first layer bonded to the steel plate uses a combination of zinc particles, multi-walled carbon nanotubes, and graphene nanoplatelets. For the second layer, hexagonal boron nitride with high electrical insulation properties is added to the matrix. The morphology of the nanoparticulates is conducted using a scanning electron microscope. The coefficient of thermal expansion, cathodic disbondment resistance, gas penetration, and scratch resistance of the coatings are evaluated. The corroded area on the cathodic disbondment test specimens reduced down up to 90% for the composite with zinc (20 wt%), multi-walled carbon nanotubes (2 wt%), and graphene nanoplatelets (2 wt%), compared to a specimen coated with a pure polymer. It is seen that the presence of nanoparticulates decreased gas permeation and thermal expansion of the matrix by 75% and 65%, respectively. The addition of nanoparticulates also enhanced scratch resistance of the coating composites.


2017 ◽  
Vol 21 (4) ◽  
pp. 1535-1556 ◽  
Author(s):  
Mohammad Sadeghi ◽  
Mohammad Hossein Pol

In this paper, in addition to investigation of the effects of adding of nanotubes on the tensile properties of epoxy matrix and glass/epoxy laminate composite, the effects of adding of nanotubes and the effect of indenter shape on quasi-static punch shear properties of glass/epoxy laminate are experimentally studied. Laminate nanocomposites have 12 layers of plain weave glass fibers which are made by hand lay-up method. Resin is composed of a two-component epoxy; Epon 828 as the base and Epikure F-205 as the curing agent. Multi-walled carbon nanotubes modified by hydroxid (–COOH) are used with 0%, 0.5% and 1% ratio in weight with respect to the matrix. In quasi-static punch shear tests, three indenters (flat, conical and ogival) are utilized. Tensile test results for nanomatrix show that the most changes are obtained on 0.5 wt.% specimen, in which the ultimate strength and strain energy are increased 22% and 17% respect to the neat sample, respectively. No distinct change was observed in tensile behavior of the hybrid composite samples by the addition of carbon nanotubes. Punch shear test results show that addition of carbon nanotubes reduces the contact force and the absorbed energy in ogival and conical indenters. In presence of nanotube particles, the maximum decreasing in the contact force and the absorbed energy happens in conical nose indenter with 23% and 26% decrease, respectively. Comparison of different indenters shows that in the neat samples, the maximum and minimum contact force belongs to the flat nose indenter (2.45 kN) and the ogival nose indenter (0.75 kN), respectively, while the maximum and minimum absorbed energy belongs to the conical nose indenter (13.5 J) and the flat nose indenter (10 J), respectively. Moreover, change of indenter geometry changes the failure mechanism, so that the failure of flat indenter is plugging and failure of sharp indenter is petaling.


2016 ◽  
Vol 721 ◽  
pp. 28-32
Author(s):  
Zhenija Roja ◽  
Ingars Reinholds ◽  
Janis Zicans ◽  
Remo Merijs Meri

Recently, ionizing radiation has found an application in nanotechnology especially attributed to the improvement of nanocomposites. In the present paper, we have developed and evaluated radiation cross-linked nanocomposites made of ethylene-octene copolymer (EOC) with 0-15 wt.% of multi-walled carbon nanotubes (MWCNTs) and irradiated by 5 MeV accelerated electrons. The influence of combined factors of MWCNT filler content and the irradiation up to 150 kGy on the tensile stress-strain properties at 25–50°C was analysed. The cross-linking efficiency was also evaluated. The results indicated improvement in tensile properties with an increase of MWCNT content and the irradiation up to 150 kGy dose. The combined influence of both factors was determined. The gel content of irradiated EOC/MWCNTs was equal to 45-86% that indicated sufficient cross-linking efficacy of EOC with MWCNTs acting as reinforcing fillers in the matrix.


2013 ◽  
Vol 641-642 ◽  
pp. 423-426
Author(s):  
Fu Xia Wang

The aim of this study was to investigate the fatigue properties of Portland cement/multi-walled carbon nanotube (MWCNTs) composites. Multi-walled carbon nanotubes of varied functionality (unfunctionalised and carboxyl functionalised), synthesized by infusion chemical vapor deposition, and ordinary Portland cement (OPC) were used to produce pastes with a water to cement ratio of 0.45. The mixing amount of MWCNTs ranged from 0.1 wt.% to 0.6wt.%. The fatigue properties of the MWCNTs–OPC was characterised with the type and wt.% loading of MWCNTs used having a significant influence on the number of cycles to failure. The condition and degree of dispersion of the MWCNTs in the matrix at different length scales were studied using field emission scanning electron microscopy. Improvements of the fatigue properties were attributed to the MWCNTs arresting or retarding crack propagation through the cement by a bridging effect and hindering crack propagation. MWCNTs agglomerates were evident in the cement microstructure and the degree of agglomeration depended on the level of the mixing amount and the ability of the MWCNTs.


2006 ◽  
Vol 313 ◽  
pp. 145-150 ◽  
Author(s):  
Jing Wang ◽  
Hua Min Kou ◽  
Yu Bai Pan ◽  
Jing Kun Guo

Carbon nanotube-mullite (Al2O3/SiO2=3/2) composites have been prepared by hot-pressing the corresponding composite powders, in which the multi-walled carbon nanotubes(1~10 vol%) are homogeneously dispersed between the mullite grains. The microstructure of the specimens has been studied and discussed in relation to the properties of the matrix, the bending strength and the fracture toughness, the dielectric constant and the dissipative factor. Carbon nanotube-mullite composites are potential electromagnetic wave absorbers owing to the percolation of the carbon nanotubes.


2021 ◽  
pp. 026248932110172
Author(s):  
Fukai Yang ◽  
Miao Xie ◽  
Zhang Yudi ◽  
Xinyu Xu

We report flexible polyurethane foams (PUFs) containing –OH functionalized multi-walled carbon nanotubes (MWCNTs) with different diameters (10–20 nm, 20–30 nm, >50 nm) from 0.1–0.6 wt% (per 100 resins of polyol by weight) prepared via in situ polymerization. After synthesis, the morphology of the MWCNT/PUF composites was observed through scanning electron microscopy (SEM) based on MWCNT amount. The MWCNTs acted as nucleating agents and increased the matrix viscosity. The pore size of the composites decreased and the number of pores increased with increasing MWCNT concentration. Dynamic mechanical analysis (DMA) showed that the storage modulus of the composites increased, the loss modulus decreased, and the Tg gradually decreased with increasing MWCNT content. The incorporation of MWCNTs induced remarkable thermal stabilization of the matrix. The increase in the degradation temperature from 294°C to 304°C resulted in a 50% weight loss. The mechanical properties of the MWCNT/PUF materials increased with increasing MWCNT proportion because of the excellent compatibility and strong interface interaction between the MWCNT and flexible PUF.


2016 ◽  
Vol 51 (11) ◽  
pp. 1619-1629 ◽  
Author(s):  
Cesar A Isaza M ◽  
JE Ledezma Sillas ◽  
JM Meza ◽  
JM Herrera Ramírez

Recently, a new manufacturing process for the production of metallic matrix composite materials reinforced with carbon nanotubes, known as sandwich technique has been proposed. This technique produces a material comprised of a metallic matrix and a banded structures-layers of multi-walled carbon nanotubes. However, among other issues, the matrix-reinforcement interface and the reinforcement dispersion degree are still open questions. The present study uses field emission scanning electron microscopy and high resolution transmission electron microscopy to probe that the method is capable to achieve a good dispersion of the multi-walled carbon nanotubes with no evidence of carbon nanotubes’ damage. The mechanical properties were measured by tensile and nanoindentation tests; improvements in the elastic modulus, yield and ultimate strengths were found, with respect to the unreinforced material.


Sign in / Sign up

Export Citation Format

Share Document