Preparation of a Cationic Nanoemulsome for Intratumoral Drug Delivery and Its Enhancing Effect on Cellular Uptake In Vitro

2011 ◽  
Vol 11 (10) ◽  
pp. 8547-8555 ◽  
Author(s):  
Hongying Li ◽  
Yanyu Xiao ◽  
Jiangxiu Niu ◽  
Xi Chen ◽  
Qineng Ping
2019 ◽  
Vol 20 (14) ◽  
pp. 3408 ◽  
Author(s):  
Anna-Karin Pada ◽  
Diti Desai ◽  
Kaiyao Sun ◽  
Narayana Prakirth Govardhanam ◽  
Kid Törnquist ◽  
...  

Mesoporous silica nanoparticles (MSNs) have been widely studied as drug delivery systems in nanomedicine. Surface coating of MSNs have enabled them to perform efficiently in terms of bioavailability, biocompatibility, therapeutic efficacy and targeting capability. Recent studies have suggested the use of polydopamine (PDA) as a facilitative coating for MSNs that provides sustained and pH-responsive drug release, owing to the adhesive “molecular-glue” function of PDA. This further endows these hybrid MSN@PDA particles with the ability to carry large amounts of hydrophilic drugs. In this study, we expand the feasibility of this platform in terms of exploring its ability to also deliver hydrophobic drugs, as well as investigate the effect of particle shape on intracellular delivery of both a hydrophilic and hydrophobic anticancer drug. MSN@PDA loaded with doxorubicin (hydrophilic) and fingolimod (hydrophobic) was studied via a systematic in vitro approach (cellular internalization, intracellular drug distribution and cytotoxicity). To promote the cellular uptake of the MSN@PDA particles, they were further coated with a polyethylene imine (PEI)-polyethylene glycol (PEG) copolymer. Drug-loaded, copolymer-coated MSN@PDA showed effective cellular uptake, intracellular release and an amplified cytotoxic effect with both doxorubicin and fingolimod. Additionally, rods exhibited delayed intracellular drug release and superior intracellular uptake compared to spheres. Hence, the study provides an example of how the choice and design of drug delivery systems can be tuned by the need for performance, and confirms the PDA coating of MSNs as a useful drug delivery platform beyond hydrophilic drugs.


Nanomedicine ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 489-509
Author(s):  
Dong Shen ◽  
Yan Shen ◽  
Qian Chen ◽  
Bin Huang ◽  
Yedong Mi ◽  
...  

Aim: Micelles are one of the most promising nanoplatforms for drug delivery, and here, cholesterol-conjugated polyoxyethylene sorbitol oleate (CPSO) micelles have been fabricated for the pulmonary delivery of paclitaxel (PTX). Materials & methods: PTX-CPSO micelles were prepared by a dialysis-ultrasonic method, and a single-factor experiment with a Box–Behnken design was conducted to optimize the formulation. Furthermore, intracellular and phagocytosis escape studies of the optimized formulation were performed on A549 and NR8383 cells. Results: The optimal micelles exhibited satisfactory encapsulation efficiency (78.48 ± 2.36%) and drug loading (17.06 ± 1.71%). In vitro studies showed enhanced CPSO micelle A549 cellular uptake and their ability to escape macrophages. Conclusion: PTX-CPSO micelles could be a promising system for pulmonary targeting by intravenous administration.


Author(s):  
Antony Thomas ◽  
Paige Baldwin ◽  
Yaling Liu

Ultrasound in the presence of microbubbles brings in transient increase in cell membrane permeability, which allows the entry of foreign molecules into cells. This platform has been applied in in vitro and in vivo gene delivery studies in recent years[1–2]. The frequently used microbubbles are air or inert gas encapsulated in a protein, lipid or polymer which is commonly used as FDA approved contrast agents in diagnostic ultrasound. On exposure to ultrasound the microbubbles lead to formation of small pores on the cell membrane. This work concentrates on application of this platform to enhance cellular uptake of nanoparticles and thereby achieve enhanced drug delivery. Nanoparticles can be manipulated at the nano level and have been applied in the realm of cancer detection and treatment for imaging, targeting tumors, and drug delivery purposes [2].


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 224
Author(s):  
Saranya Chaiwaree ◽  
Ausanai Prapan ◽  
Nittiya Suwannasom ◽  
Tomás Laporte ◽  
Tanja Neumann ◽  
...  

Doxorubicin (DOX) is an effective anthracycline antibiotic drug which is commonly used in a broad range cancer therapy. However, due to dose depending side effects and toxicity to non-cancerous tissues, its clinical applications are restricted. To overcome these limitations, human serum albumin (HSA) has been investigated as a biocompatible drug delivery vehicle. In this study, human serum albumin submicron particles (HSA-MPs) were fabricated by using the Co-precipitation–Crosslinking–Dissolution technique (CCD technique) and DOX was loaded into the protein particles by absorption. DOX-HSA-MPs showed uniform peanut-like shape, submicron size and negative zeta-potential (−13 mV). The DOX entrapment efficiency was 25% of the initial amount. The in vitro release in phosphate buffered saline pH 7.4 was less than 1% within 5 h. In contrast, up to 40% of the entrapped DOX was released in presence of a protein digesting enzyme mixture (Pronase®) within the same time. In addition, in vitro cytotoxicity and cellular uptake of DOX-HSA-MPs were evaluated using the lung carcinoma cell line A549. The results demonstrated that DOX-HSA-MPs reduced the cell metabolic activities after 72 h. Interestingly, DOX-HSA-MPs were taken up by A549 cells up to 98% and localized in the cell lysosomal compartment. This study suggests that DOX-HSA-MPs which was fabricated by CCD technique is seen as a promising biopolymer particle as well as a viable alternative for drug delivery application to use for cancer therapy.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1833 ◽  
Author(s):  
Kyoung-Ran Kim ◽  
Pascal Röthlisberger ◽  
Seong Kang ◽  
Kihwan Nam ◽  
Sangyoup Lee ◽  
...  

Rolling circle amplification (RCA) is a robust way to generate DNA constructs, which are promising materials for biomedical applications including drug delivery because of their high biocompatibility. To be employed as a drug delivery platform, however, the DNA materials produced by RCA need to be shaped into nanoparticles that display both high cellular uptake efficiency and nuclease resistance. Here, we showed that the DNA nanoparticles (DNPs) can be prepared with RCA and modified nucleotides that have side-chains appended on the nucleobase are capable of interacting with the DNA strands of the resulting RCA products. The incorporation of the modified nucleotides improved cellular uptake efficiency and nuclease resistance of the DNPs. We also demonstrated that these DNPs could be employed as carriers for the delivery of a photosensitizer into cancer cells to achieve photodynamic therapy upon irradiation at both the in vitro and in vivo levels.


2020 ◽  
Vol 15 (4) ◽  
pp. 341-359
Author(s):  
Moloud Kazemi ◽  
Jaber Emami ◽  
Farshid Hasanzadeh ◽  
Mohsen Minaiyan ◽  
Mina Mirian ◽  
...  

Background: The development of biocompatible tumor-targeting delivery systems for anticancer agents is essential for efficacious cancer chemotherapy. Nanoparticles, as drug delivery cargoes for cancer therapy, are rapidly improving to overcome the limitations of conventional chemotherapeutic agents. Heparin–modified nanoparticles are currently being considered as one of the favorable carriers for the delivery of chemotherapeutics to cancer tissues. Objective: This study was aimed at evaluating the in vitro and in vivo antitumor activity of a novel targeted, pH-sensitive, heparin-based polymeric micelle loaded with the poorly water-soluble anticancer drug, docetaxel (DTX). The micelles could overcome the limited water solubility, non-specific distribution, and insufficient drug concentration in tumor tissues. Methods: DTX-loaded folate targeted micelles were prepared and evaluated for physicochemical properties, drug release, in vitro cellular uptake and cytotoxicity in folate receptor-positive and folate receptor-negative cells. Furthermore, the antitumor activity of DTX-loaded micelles was evaluated in the tumor-bearing mice. Some related patents were also studied in this research. Results: The heparin-based targeted micelles exhibited higher in vitro cellular uptake and cytotoxicity against folate receptor over-expressed cells due to the specific receptor-mediated endocytosis. DTX-loaded micelles displayed greater antitumor activity, higher anti-angiogenesis effects, and lower systemic toxicity compared with free DTX in a tumor-induced mice model as confirmed by tumor growth monitoring, immunohistochemical evaluation, and body weight shift. DTX-loaded targeting micelles demonstrated no considerable toxicity on major organs of tumor-bearing mice compared with free DTX. Conclusion: Our results indicated that DTX-loaded multifunctional heparin-based micelles with desirable antitumor activity and low toxicity possess great potential as a targeted drug delivery system in the treatment of cancer.


2016 ◽  
Vol 36 ◽  
pp. 120-129 ◽  
Author(s):  
Zerrin Sezgin-bayindir ◽  
Ahmet Doğan Ergin ◽  
Mahmut Parmaksiz ◽  
Ayse Eser Elcin ◽  
Yasar Murat Elcin ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 234 ◽  
Author(s):  
Harikiran Athmakur ◽  
Anand Kumar Kondapi

Objective: Despite sophisticated treatment regimens, there is no significant improvement in the mortality rates of glioblastoma due to insufficient dosage delivery, reoccurrence of tumors, higher systemic toxicity, etc. Since brain endothelial cells and glioblastoma cells express lactoferrin receptors, a target-specific drug delivery vehicle was developed using lactoferrin itself as a matrix, into which carmustine was loaded. The objective was to use carmustine loaded lactoferrin nanoparticles (CLN) to achieve higher therapeutic efficacy and target specificity compared to free carmustine.Methods: CLN were prepared using the Sol-oil method. The nanoparticles prepared were characterized for their size, shape, polydispersity, and stability using FESEM and DLS methods. Drug loading and drug releasing efficiencies were also estimated. Further, cellular uptake of nanoparticles and their antiproliferative efficacy against glioblastoma cells were evaluated.Results: Characterization of CLN showed that they were spherical with ≤ 41 nm diameter and exhibited homogeneously dispersed stable distribution. Loading efficiency of carmustine in CLN was estimated to be 43±3.7 %. Drug release from the nanoparticles was pH dependent with the maximum observed at pH 5. At physiological and gastric pH, drug release was lower, whereas maximum release was observed at endocytotic vesicular and around tumor extracellular pH. Confocal microscopic studies showed an active cellular uptake of nanoparticles. Results of antiproliferative analysis substantiated a higher antiproliferative effect for CLN compared to free carmustine.Conclusion: The results of the study demonstrated that CLN serves as a vital tool, in designing an effective treatment strategy for targeted drug delivery to glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document