Structural Anisotropy and Optical Properties of Nonpolar a-Plane GaN Epitaxial Layers

2015 ◽  
Vol 15 (10) ◽  
pp. 7787-7790 ◽  
Author(s):  
Yong Gon Seo ◽  
Sun Hye Shin ◽  
Doo Soo Kim ◽  
Hyung-Do Yoon ◽  
Sung-Min Hwang ◽  
...  

In-plane structural anisotropy is characteristic of nonpolar (1120) a-plane GaN (a-GaN) films grown on r-plane sapphire substrates. The anisotropic peak broadenings of X-ray rocking curves (XRCs) are clearly observed with M- or W-shaped dependence on the azimuth angles. We investigated the optical properties of both M- and W-shaped a-GaN samples with room and low-temperature photoluminescence (PL) measurements. The W-shaped a-GaN film showed higher PL intensity and more compressive strain compared to the M-shaped a-GaN film, whereas the XRC peak widths of the M-shaped a-GaN film on the azimuth angles are lower than those of W-shaped specimens, indicating that better crystalline quality was obtained. We speculate that the PL intensity and strain state of a-GaN layers may be more influenced by the crystallinity of a specific crystal orientation or direction, especially along the m-axis as opposed to the c-axis. This occurrence is most likely due to anisotropic defect distributions, resulting from differences in dangling bond densities of (0001) and {1-100} facets.

2015 ◽  
Vol 1736 ◽  
Author(s):  
Shruti Mukundan ◽  
Lokesh Mohan ◽  
Greeshma Chandan ◽  
Basanta Roul ◽  
S.B. Krupanidhi

ABSTRACTGaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. Impact of nitridation on structural and optical properties of GaN film was investigated. The film grown on a nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. The high resolution X-ray diffraction studies confirmed the orientation of the GaN films. X-ray rocking curve showed better crystallinity of semipolar as compared to nonpolar GaN. Atomic force microscopy showed smoother films in case of nonpolar GaN which might be in account of the nitridation treatment. Room temperature photoluminescence study showed nonpolar GaN to have higher value of compressive strain as compared to semipolar GaN film, which was further confirmed by room temperature Raman spectroscopy. Despite the fact that it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode, we hereby report the development of non-polar GaN of usable quality, on an m-plane sapphire, involving controlled steps of nitridation.


1995 ◽  
Vol 384 ◽  
Author(s):  
C.T. Wang ◽  
R.M. Osgood ◽  
R.L. White ◽  
B.M. Clemens

ABSTRACTThe effect of in-plane strain in (111)-oriented epitaxial TbFe2 films on the magnetization orientations was studied. Magnetocrystalline anisotropy, shape anisotropy, and magnetoelastic energy were calculated to determine the magnetization orientation in the presence of various in-plane strains. Theoretical considerations indicate that a compressive strain smaller than -0.065% can induce an out-of-plane magnetization. DC magnetron sputtering from Tb and Fe elemental targets was used to grow 50, 100, 200, and 400 Å thick epitaxial TbFe2(111) films at 600°C on (110)-oriented sapphire substrates with 1000 Å thick epitaxial Mo(110) buffer layers. The growth rate of the TbFe2(111) films was 1.44 Å/sec. X-ray diffractometry, Rutherford backscattering spectrometry, and vibrating sample magnetometry were used to characterize the crystal structure, epitaxial orientation, composition, stress and strain state, and magnetic properties of the TbFe2 films. The TbFe2(111) films were epitaxial with twins rotated by 60° and were in tensile strain states with the resulting in-plane magnetization.


1996 ◽  
Vol 423 ◽  
Author(s):  
R. J. Matyi ◽  
D. Zhi ◽  
N. R. Perkins ◽  
M. N. Horton ◽  
T. F. Kuech

AbstractWe report a structural analysis of GaN layers with thicknesses ranging from 10 μm to 250 μm which have been grown on sapphire substrates by halide vapor phase epitaxy (HVPE). The effect of growth rate during HVPE growth has also been examined. The growth was performed using GaCl and ammonia as reactants; growth rates in excess of 90 μm/hr have been achieved. The structural characteristics of these layers have been performed wit'i high resolution x-ray diffractometry. Longitudinal scans parallel to the GaN [0002] direction, transverse scans perpendicular to the [0002], and reciprocal space maps of the total diffracted intensity have been obtained from a variety of GaN layers. The transverse scans typically show broad rocking curves with peak breadths of several hundreds of arcseconds. In contrast, the longitudinal scans (or “θ/2θ scans”) which are sensitive only to strains in the GaN layers (and not their mosaic distributions) showed peak widths that were at least an order of magnitude smaller and in some cases were as narrow as 16 arcseconds. These results suggest that the defect structure of the GaN layers grown by HVPE is dominated by a dislocation-induced mosaic distribution, with the effects of strain in these materials being negligible in comparison.


1995 ◽  
Vol 395 ◽  
Author(s):  
W. Van Der Stricht ◽  
I. Moerman ◽  
P. Demeester ◽  
J.A Crawley ◽  
E.J. Thrush ◽  
...  

ABSTRACTIn this paper GaN films are examined, which are grown on basal plane (0001) sapphire substrates. Growth is performed in a novel type of vertical rotating disk reactor. Results on the effect of a GaN nucleation layer on the properties of the overgrown GaN epilayer are presented. Characterisation includes surface morphology studies, DC X-ray diffraction and optical characterisation. Best film quality so far has a double crystal X-ray half width of 85 arcsec at approximately 1 μm thickness.


2021 ◽  
Author(s):  
Xiaotao Hu ◽  
Yimeng Song ◽  
Zhaole Su ◽  
Haiqiang Jia ◽  
Wenxin Wang ◽  
...  

Abstract Gallium nitride (GaN) thin film of the nitrogen polarity (N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition (MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2° and 4° respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide (KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the X-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the X-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length. The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is near to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.


1994 ◽  
Vol 342 ◽  
Author(s):  
O.L. Russo ◽  
N.M. Ravindra ◽  
J.M. Grow ◽  
K.A. Dumas

ABSTRACTThe effect of furnace grown SiO2 layers on the optical properties of p- on p+ (100) Si substrates are investigated. The real part, n, of the complex refractive index n* = n + ik is calculated for radiation measured in the infra-red (IR) region between 3000 and 8000 cm−1 where the extinction coefficient, k, is negligible. The expression for n is obtained using the Fresnel coefficients for a three medium air-oxide-Si model. Strain in the silicon, which affects n, and caused by the stress in the SiO2 layer, increases with oxide thickness. X-ray diffraction (XRD) was used to measure the strain in Si for oxides layers ranging from native to 5124Å. The data showed a monotonically increasing normal compressive strain, εN (up to 0.47%) with oxide thickness, however, the corresponding change in n due to strain was not well defined. The effect of strain on the direct optical gap, Ed, at 3.46 eV when determined from results of other investigators by electroreflectance, suggests an average shift in Ed of about 25 meV.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


1994 ◽  
Vol 58 (391) ◽  
pp. 307-314 ◽  
Author(s):  
Mizuhiko Akizuki ◽  
Hirotugu Nisidoh ◽  
Yasuhiro Kudoh ◽  
Tomohiro Watanabe ◽  
Kazuo Kurata

AbstractA study of apatite crystals from the Asio mine, Japan, showed sectoral texture related to the growth of the crystal, and with optically biaxial properties within the sectors. Wet chemical analysis gave a composition Ca5(PO4)3(F0.64,OH0.38,Cl0.01)1.03 for the specimen.Additional diffraction spots were not observed in precession and oscillation X-ray photographs and electron diffraction photographs. Since the internal textures correlate with the surface growth features, it is suggested that the internal textures and the unusual optical properties were produced during nonequilibrium crystal growth. The fluorine/hydroxyl sites in hexagonal apatite are symmetrically equivalent in the solid crystal but, at a growth surface, this equivalence may be lost, resulting in a reduction of crystal symmetry. Heating of the apatite to about 850°C results in the almost complete disappearance of the optical anomalies due to disordering, which may be related to the loss of hydroxyl from the crystal.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


Sign in / Sign up

Export Citation Format

Share Document