Effects of Pokemon combined with survivin and cyclin B1 on glioma U251 cells by Fe3O4 magnetic nanoparticles

2019 ◽  
Vol 9 (6) ◽  
pp. 616-622
Author(s):  
Mo Wang ◽  
Shengqiang Jiang ◽  
Xu Zhang ◽  
Ruoyu Peng ◽  
Minghua Zhu ◽  
...  

Gliomas are the most common type of malignant brain tumors. Glioma diagnosis is not very effective, and there are few therapeutic biomarkers. The aims of this study were to detect Pokemon and its regulatory genes and explore the potential mechanism between them in glioma. The Fe3O4 nanoparticles identified using TEM were used to isolate cell and tissue RNA, qRT-PCR was used to detect Pokemon, survivin, and cyclin B1 mRNA expression. Western blotting was used to detect Pokemon, survivin, and cyclin B1 protein expression. Immunofluorescence and immunohistochemistry were used to detect Pokemon expression. CCK-8 assay, EdU staining, and TUNEL staining were used to assess cell viability and apoptosis. Pokémon was over-expressed in human glioma tissue and cells. In U251 cells, Pokemon knockdown significantly decreased survivin and cyclin B1 expression, cell viability, and Pokemon expression and increased apoptosis. Pokemon overexpression had an opposite effect. In addition, over-expressed Pokemon reversed these results. Overall, we found that Pokemon promotes tumorigenesis, and the potential mechanism might be related to the Pokemon-related genes survivin and cyclin B1.

2019 ◽  
Vol 159 (3) ◽  
pp. 119-125 ◽  
Author(s):  
Feng Li ◽  
Chao Zhang ◽  
Guifang Zhang

Glioma, as one of the most aggressive tumors, is hardly cleaned by surgical removal, leading to a low survival rate. m6A is an internal modification in RNA and plays an important role in many kinds of cancers. In our study, we detected that the m6A level was decreased in glioma tissue, which might be caused by decreased METTL3 and increased FTO levels. We upregulated the m6A level in U251 cells by overexpressing METTL3. The results showed that a high level of m6A led to a reduced migration and proliferation ability, and vice versa. Finally, we performed a TUNEL assay and showed that m6A regulated cell proliferation by influencing apoptosis of U251 cells through regulating HSP90 expression.


2020 ◽  
Author(s):  
Shiqi Cheng ◽  
Xiangqun Huang ◽  
Raorao Yuan ◽  
Yan Zhang

Abstract Background: Radioresistance has a great impact on prognosis of glioma patients. However, the potential mechanism underlying the radioresistance of glioma cells remains largely unknown. Methods: LRIG1 overexpression model was firstly established by using Flag-LRIG1 plasmid. The expression of LRIG1, CTLA-4 proteins were detected by western blot and IHC in cells and human tissue. Real-time PCR was used for deterring mRNA expression. Cell viability and apoptosis were detected using CCK-8 and Annexin-V/propidium iodide (PI), respectively. Co-Immunoprecipitation was used for detecting the combination of LRIG1 and CTLA-4 proteins. Results: LRIG1 was significantly down-regulated in radioresistant glioma cells. Overexpressed LRIG1 could promote the radiosensitivity of glioma cells, meanwhile, inhibit the expression of p-AKT and CTLA-4 protein in radioresistant glioma cells. Furthermore, LRIG1 combined with CTLA-4 and promoted CTLA-4 degradation. In human glioma tissue, LRIG1 was down-regulated, while CTLA-4 was highly expressed in glioma tissue. Finally, correlation analysis showed that the expression of LRIG1 was negatively correlated with expression of CTLA-4 and radioresistance of glioma patients. Conclusion: Our findings demonstrated that LRIG1 facilitates radioresistance glioma cells by regulating CTLA4 /AKT signaling pathway.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3801
Author(s):  
Dijana Drača ◽  
Milan Marković ◽  
Marta Gozzi ◽  
Sanja Mijatović ◽  
Danijela Maksimović-Ivanić ◽  
...  

Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 μM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.


2021 ◽  
Vol 11 (9) ◽  
pp. 1691-1697
Author(s):  
Huanli Zhang ◽  
Zhen Zhang

Background and Objectives: Beta-amyloid (Aβ) has pivotal functions in the pathogenesis of Alzheimer’s Disease (AD). The main purpose of this study is to explore the protective role and possible mechanisms of matrine against Aβ25–35-induced neurotoxicity in PC12 cells. Materials and Methods: A vitro model that involved Aβ25–35-induced neuronal damage in PC12 cells was adopted in the present study. Cell viability and apoptosis of PC12 cells were determined by CCK-8 assay and TUNEL staining, respectively. Intracellular ROS levels were determined by DCFH-DA probe and levels of TNFα, IL-6 and IL-1β were assessed by ELISA assay. In addition, telomerase reverse transcriptase (TERT) levels were determined by ELISA assay and telomere lengths were examined by real-time quantitative PCR analysis to assess telomerase activities. Furthermore, vital proteins related to cell apoptosis and hallmarks of senescence were detected by western blot analysis. Results: Matrine (10, 20, 50 μg/ml) dose-dependently protected cell viability against Aβ25–35 cytotoxicity in PC12 cells. Meanwhile, matrine at 10, 20, 50 μg/ml markedly reduced ROS production and downregulated the levels of TNFα, IL-6 and IL-1β in Aβ25–35-injuried PC12 cells. The results also proved that matrine may restore telomerase activities and telomere lengths in Aβ25–35-injuried PC12 cells by inhibiting inflammatory responses and oxidative stress. Neuronal apoptosis induced by Aβ25–35 were reversed upon cotreatment with matrine. Moreover, matrine markedly mitigated Aβ25–35 induced cell senescence in a concentration-dependentmanner. Conclusion: Our findings demonstrated that matrine protected PC12 cells against Aβ25–35-induced cytotoxicity, oxidative stress, inflammation, neuronal apoptosis and cell senescence.


2017 ◽  
Vol 58 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Lesya I. Коbylinska ◽  
Olga Yu. Klyuchivska ◽  
Iryna I. Grytsyna ◽  
Natalia Finiuk ◽  
Rostyslav R. Panchuk ◽  
...  

Author(s):  
Ana Paula Santin Bertoni ◽  
Isabele Cristiana Iser ◽  
Rafael Paschoal de Campos ◽  
Márcia Rosangela Wink
Keyword(s):  

2020 ◽  
Author(s):  
shuyi chen ◽  
Ping Zhu ◽  
Xue Wang ◽  
Youping Jin ◽  
Xiuling Zhi ◽  
...  

Abstract Background: Anlotinib, a multi-target tyrosine kinase inhibitor, has already been indicated to have significant anticancer effects on lung cancer, colon cancer and ovarian cancer in a phase II clinical trial, but its effect on breast cancer (BC) has not been adequately investigated. Methods: The proliferation activity of BC cell lines MCF-7 and MDA-MB-231 with the treatment of anlotinib was tested by Cell Counting Kit-8 (CCK-8) assay and immunocytochemistry (ICC) staining. We investigated the alteration of cell cycle and apoptosis and autophagy level and the underlying mechanism in the cell lines by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), Western blots, ICC and TUNEL staining and flow cytometry. Further, AT-3 cells were subcutaneously injected into C57BL/6 mice, followed by anlotinib intragastrically. The extracted tumours were assessed by qRT-PCR, Western blots and immunohistochemistry.Results: We found that anlotinib suppressed the cell viability and proliferation of MCF-7 and MDA-MB-231 cell lines and tumour growth in BC xenografts in mice, likely due to abnormal cell cycle arrest and induction of autophagy and apoptosis. Then, we further examined the underlying mechanism of anlotinib, and the results indicated that anlotinib induced apoptosis by promoting autophagy in MCF-7 and MDA-MB-231 cells by regulating the Akt/GSK-3α pathway. The analysis of data from patients with BC collected in TCGA revealed that increased VEGFA expression was related to BC.Conclusions: Our study demonstrated that anlotinib inhibited the growth of BC cells via promoting apoptosis through autophagy mediated by Akt/GSK-3α signalling and may be an effective new drug for BC treatment.


2021 ◽  
Author(s):  
Mei-Li Mo ◽  
Jin-Mei Jiang ◽  
Xiao-Ping Long ◽  
Li-Hu Xie

Abstract Objectives Present study aimed to illustrate the role of miR-144-3p in RA. Methods N1511 chondrocytes were stimulated by IL-1β to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model and the arthritis index score was calculated. Cell viability was determined by CCK-8. The expression of cartilage extracellular matrix proteins (Collagen II and Aggrecan) and matrix metalloproteinases protein (MMP-13) were determined by qRT-PCR and western blots. Cell apoptosis was measured by Flow cytometry. ELISA was applied to test the secretion of pro-inflammatory cytokines (IL-1β and TNF-α). Tissue injury and apoptosis were detected by HE staining and TUNEL staining. Interaction of miR-144-3p and BMP2 was verified by dual luciferase assay. Results MiR-144-3p was dramatically increased in IL-1β induced N1511 cells. MiR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1β induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of PI3K/Akt signaling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1β stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. Conclusion Collectively, miR-144-3p could aggravate chondrocytes injury inflammatory response in RA via BMP2/PI3K/Akt axis.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi253-vi253
Author(s):  
Pieter Wesseling ◽  
Andy Zhang ◽  
Jan de Munck ◽  
Niels Verburg ◽  
Philip de Witt Hamer ◽  
...  

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Jiandong Xiao ◽  
Yuli Lu ◽  
Xinchun Yang

Abstract Background This study focused on the roles of lncRNA THRIL in coronary atherosclerotic heart disease (CAD) through regulating AKT signaling pathway and directly interacting with FUS. Methods QRT-PCR was conducted to detect the expression of THRIL in CAD blood samples and endothelial progenitor cells (EPCs). Cell autophagy of EPCs was examined through Cyto-ID Autophagy Detection Kit. CCK-8 assay and flow cytometry were carried out to assess cell viability and apoptosis under various interference conditions. Western blotting was conducted to detect the expression of interest proteins. The expression levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured by qRT-PCR. The direct interactions between HCG18 and FUS was confirmed through RNA electrophoretic mobility shift assay (RNA EMSA) and RNA immunoprecipitation (RIP) assay. Results THRIL was upregulated in CAD blood samples and EPCs. Knockdown of THRIL in EPCs promoted cell viability, inhibited cell autophagy and further suppressed the development of CAD. Over-expression of THRIL induced inactivation of AKT pathway, while knockdown of THRIL played reversed effects. THRIL directly interacted with FUS protein and knockdown of FUS reversed the over-expressing effect of THRIL on cell proliferation, autophagy and the status of AKT pathway. Conclusion THRIL inhibits the proliferation and mediates autophagy of endothelial progenitor cells via AKT pathway and FUS.


Sign in / Sign up

Export Citation Format

Share Document