scholarly journals Intercomparison Study of Cloud-to-Ground Lightning Flashes Observed by KARITLDS and KLDN at South Korea

2011 ◽  
Vol 50 (1) ◽  
pp. 224-232 ◽  
Author(s):  
Bong-Jae Kuk ◽  
Hong-Il Kim ◽  
Jong-Sung Ha ◽  
Hyo-Keun Lee

Abstract Concern regarding lightning activity as a precursor of severe weather is increasing. Atmospheric electricity, including lightning phenomena, is one of most serious threats to successful space launch operations. The objective of this study was to evaluate the performance of two different lightning detection networks using a time–range correlation method. Understanding lightning detection network performance enables the weather forecaster to support decisions made regarding space launch operations. The relative detection efficiency (ReDE), observation ratio, ellipse area for 50% probability of location, number of sensors reporting (NSR), time difference, and distance, as parameters that predict system performance, were calculated with the time-range correlation method using cloud-to-ground (CG) flash data from the Korea Aerospace Research Institute Total Lightning Detection System (KARITLDS) and from the Korean Meteorology Administration Lightning Detection Network (KLDN). In this study, 15 thunderstorms were selected from 2008–09 data. A total of 41 192 and 28 976 CG flashes were recorded by KARITLDS and KLDN, respectively. In all, 19 044 CG flashes were correlated as being the same flash. The observation ratios, ReDEKARITLDS, and ReDEKLDN were calculated as 1.42, 0.66, and 0.46, respectively. Eighty percent of CG flashes detected by the KARITLDS (KLDN) had elliptical areas less than 5 km2 (12 km2), where the elliptical areas were defined as having a 50% probability of containing the CG flash. Two regions showing a high observation ratio were due to high KARITLDS detection efficiency and to the blocking of electromagnetic wave propagation by Mount Hanla at 1950 m above sea level.

2009 ◽  
Vol 3 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Marek Loboda ◽  
Hans D. Betz ◽  
Piotr Baranski ◽  
Jan Wiszniowski ◽  
Zdzislaw Dziewit

Lightning detection in Poland is performed by means of a PERUN (Safir 3000) system operated by the Institute of Meteorology and Water Management. Poland is also partly covered by a VLF/LF lightning detection system (CLDN, Central Lightning Detection Network). Both sources of lightning data have their limitations resulting from detection technique, limited number of sensors and geographical configuration, with the consequence of shortcomings in the data quality. For this reason, a new network has been installed in Poland and started continuous real-time operation in May 2006. It is LINET that covers entire Poland and is complemented by numerous sensors positioned in surrounding countries. In 2007 additional LINET sensors have been installed in Poland in order to allow exploitation of reduced baselines for efficient achievement of total lightning. In the frame of the COST P18 Action “Physics of Lightning Flash and Its Effects” another new Polish project started in 2006 related to regional lightning location. At present, the Local Lightning Detection Network (LLDN) undergoes installation in the region of Warsaw. LLDN will consist of six individual stations equipped with E-field antennae and digital recorders synchronized with GPS time signals. The aim of LLDN installation is complement other networks covering region of Warsaw (PERUN, LINET) and to provide an additional source of lightning CG data with high sensitivity in a relatively small area. In the paper are described general characteristics of LINET in Poland, as well as basic characteristics and assumed performance of LLDN, which will start operation in 2008.


2016 ◽  
Vol 33 (3) ◽  
pp. 563-578 ◽  
Author(s):  
Phillip M. Bitzer ◽  
Jeffrey C. Burchfield ◽  
Hugh J. Christian

AbstractHistorically, researchers explore the effectiveness of one lightning detection system with respect to another system; that is, the probability that system A detects a discharge given that system B detected the same discharge is estimated. Since no system detects all lightning, a more rigorous comparison should include the reverse process—that is, the probability that system B detects a discharge given that system A detected it. Further, the comparison should use the fundamental physical process detected by each system. Of particular interest is the comparison of ground-based radio frequency detectors with space-based optical detectors. Understanding these relationships is critical as the availability and use of lightning data, both ground based and space based, increases. As an example, this study uses Bayesian techniques to compare the effectiveness of the Earth Networks Total Lightning Network (ENTLN), a ground-based wideband network, and the Lightning Imaging Sensor (LIS), a space-based optical detector. This comparison is completed by matching LIS groups and ENTLN pulses, each of which correspond to stroke-type discharges. The comparison covers the period from 2009 to 2013 over several spatial domains. In 2013 LIS detected 52.0% of the discharges ENTLN reported within the LIS field of view globally and 53.2% near North America. Conversely, ENTLN detected 5.9% of the pulses detected by LIS globally and 26.9% near North America in 2013. Using these results in the Bayesian-based methodology outlined, the study finds that LIS detected 80.1% of discharges near North America in 2013, while ENTLN detected 40.1%.


2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Pengfei Li ◽  
Guofu Zhai ◽  
Wenjing Pang ◽  
Wen Hui ◽  
Wenjuan Zhang ◽  
...  

In this study, a new moving amplification matching algorithm was proposed, and then the temporal and spatial differences and correlation were analysed and evaluated by comparing the FengYun-4A Lightning Mapping Imager (FY-4A LMI) data and the China Meteorological Administration Lightning Detection Network Advanced TOA and Direction (CMA-LDN ADTD) system data of southwest China in July 2018. The results are as follows. Firstly, the new moving amplification matching algorithm could effectively reduce the number of invalid operations and save the operation time in comparison to the conventional ergodic algorithms. Secondly, LMI has less detection efficiency during the daytime, using ADTD as a reference. The lightning number detected by ADTD increased from 5:00 AM UTC (13:00 PM BJT, Beijing Time) and almost lasted for a whole day. Thirdly, the trends of lightning data change of LMI and ADTD were the same as the whole. The average daily lightning matching rate of the LMI in July was 63.23%. The average hourly lightning matching rate of the LMI in July was 75.08%. Lastly, the mean value of the spherical surface distance in the matched array was 35.49 km, and roughly 80% of the matched distance was within 57 km, indicating that the spatial threshold limit was relatively stable. The correlation between LMI lightning radiation intensity and ADTD lighting current intensity was low.


2021 ◽  
Vol 13 (9) ◽  
pp. 1746
Author(s):  
Zhixiong Chen ◽  
Xiushu Qie ◽  
Juanzhen Sun ◽  
Xian Xiao ◽  
Yuxin Zhang ◽  
...  

This study investigates the characteristics of space-borne Lightning Mapping Imager (LMI) lightning products and their relationships with cloud properties using ground-based total lightning observations from the Beijing Broadband Lightning Network (BLNET) and cloud information from S-band Doppler radar data. LMI showed generally consistent lightning spatial distributions with those of BLNET, and yielded a considerable lightning detection capability over regions with complex terrain. The ratios between the LMI events, groups and flashes were approximately 9:3:1, and the number of LMI-detected flashes was roughly one order of magnitude smaller than the number of BLNET-detected flashes. However, in different convective episodes, the LMI detection capability was likely to be affected by cloud properties, especially in strongly electrified convective episodes associated with frequent lightning discharging and thick cloud depth. As a result, LMI tended to detect lightning flashes located in weaker and shallower cloud portions associated with fewer cloud shielding effects. With reference to the BLNET total lightning data as the ground truth of observation (both intra-cloud lightning and cloud-to-ground lightning flashes), the LMI event-based detection efficiency (DE) was estimated to reach 28% under rational spatiotemporal matching criteria (1.5 s and 65 km) over Beijing. In terms of LMI flash-based DE, it was much reduced compared with event-based DE. The LMI flash-based ranged between 1.5% and 3.5% with 1.5 s and 35–65 km matching scales. For 330 ms and 35 km, the spatiotemporal matching criteria used to evaluate Geostationary Lightning Mapper (GLM), the LMI flash-based DE was smaller (<1%).


2005 ◽  
Vol 23 (2) ◽  
pp. 277-290 ◽  
Author(s):  
C. J. Rodger ◽  
J. B. Brundell ◽  
R. L. Dowden

Abstract. An experimental VLF World-Wide Lightning Location (WWLL) network has been developed through collaborations with research institutions across the globe. The aim of the WWLL is to provide global real-time locations of lightning discharges, with >50% CG flash detection efficiency and mean location accuracy of <10km. While these goals are essentially arbitrary, they do define a point where the WWLL network development can be judged a success, providing a breakpoint for a more stable operational mode. The current network includes 18 stations which cover much of the globe. As part of the initial testing phase of the WWLL the network operated in a simple mode, sending the station trigger times into a central processing point rather than making use of the sferic Time of Group Arrival (TOGA). In this paper the location accuracy of the post-TOGA algorithm WWLL network (after 1 August 2003) is characterised, providing estimates of the globally varying location accuracy for this network configuration which range over 1.9-19km, with the global median being 2.9km, and the global mean 3.4km. The introduction of the TOGA algorithm has significantly improved the location accuracies. The detection efficiency of the WWLL is also considered. In the selected region the WWLL detected ~13% of the total lightning, suggesting a ~26% CG detection efficiency and a ~10% IC detection efficiency. Based on a comparison between all WWLL good lightning locations in February-April 2004, and the activity levels expected from satellite observations we estimate that the WWLL is currently detecting ~2% of the global total lightning, providing good locations for ~5% of global CG activity. The existing WWLL network is capable of providing real-time positions of global thunderstorm locations in its current form.


2018 ◽  
Vol 931 ◽  
pp. 1019-1024
Author(s):  
Vitaliy A. Shapovalov

This paper presents the developed program-mathematical software for receiving, archiving, analysis and display of radar, lightning and satellite data on clouds and precipitation, interfacing of meteorological information. The program of processing of meteorological information "GIMET-2010" is established on a network of weather radars DMRL-C of the Russian Federation. An automated system combining radar and lightning detection system information applies to the command posts of the uniformed services on the fight against hail and centers of severe storm warning. Following items are provided: a receiving and transmitting to consumers the operational radar data on the actual weather; the detection, identification, and warning of hazardous weather phenomena for airports and populated areas; measurement of the intensity and amount of precipitation for agriculture, hydrological forecasts and land reclamation; obtaining precipitation map for agriculture and insurance companies.


Author(s):  
Muhammad Akmal Bahari ◽  
Zikri Abadi Baharudin ◽  
Tole Sutikno ◽  
Ahmad Idil Abdul Rahman ◽  
Mohd Ariff Mat Hanafiah ◽  
...  

The mechanism on how lightning detection system (LDS) operated never been exposed by manufacturer since it was confidential. This scenario motivated the authors to explore the issue above by using MATLAB to develop autoanalysis software based on the feature extraction. This extraction is intended for recognizing the parameters in the first return stroke, and compare the measurement between the autoanalysis software and the manual analysis. This paper is a modification based on a previous work regarding autoanalysis of zero-crossing time and initial peak of return stroke using features extraction programming technique. Further, the parameter on rising time of initial peak is added in this autoanalysis programming technique. Finally, the manual analysis using WaveStudio (LeCroy product) of those two lightning parameters is compared with autoanalysis software. This study found that the autoanalysis produce similar result with the manual analysis, hence proved the reliability of this software.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1937 ◽  
Author(s):  
Adam Stawiarski ◽  
Aleksander Muc

In this paper, the elastic wave propagation method was used in damage detection in thin structures. The effectiveness and accuracy of the system based on the wave propagation phenomenon depend on the number and localization of the sensors. The utilization of the piezoelectric (PZT) transducers makes possible to build a low-cost damage detection system that can be used in structural health monitoring (SHM) of the metallic and composite structures. The different number and localization of transducers were considered in the numerical and experimental analysis of the wave propagation phenomenon. The relation of the sensors configuration and the damage detection capability was demonstrated. The main assumptions and requirements of SHM systems of different levels were discussed with reference to the damage detection expectations. The importance of the damage detection system constituents (sensors number, localization, or damage index) in different levels of analysis was verified and discussed to emphasize that in many practical applications introducing complicated procedures and sophisticated data processing techniques does not lead to improving the damage detection efficiency. Finally, the necessity of the appropriate formulation of SHM system requirements and expectations was underlined to improve the effectiveness of the detection methods in particular levels of analysis and thus to improve the safety of the monitored structures.


Sign in / Sign up

Export Citation Format

Share Document