The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs

2010 ◽  
Vol 67 (12) ◽  
pp. 3984-4000 ◽  
Author(s):  
Jian Lu ◽  
Gang Chen ◽  
Dargan M. W. Frierson

Abstract The sensitivity of the midlatitude storm track and eddy-driven wind to the sea surface temperature (SST) boundary forcing is studied over a wide range of perturbations using both simple and comprehensive general circulation models over aquaplanet lower boundary conditions. Under the single-jet circulation regime similar to the conditions of the present climate in the Northern Hemisphere winter or the Southern Hemisphere summer, the eddy-driven jet shifts monotonically poleward with both the global mean and the equator-to-pole gradient of the SST. The eddy-driven jet can have a reverse relationship to the gradient if it is well separated from the subtropical jet and Hadley cell boundary in a double-jet circulation regime. A simple scaling is put forward to interpret the simulated sensitivity of the storm-track/eddy-driven westerly wind position within the single-jet regime in both models. The rationale for the scaling is based on the notion that the wave activity flux can propagate horizontally away from the source region, resulting in a broader distribution of eddy potential vorticity (PV) flux in the upper troposphere than that of the flux in the opposite direction in the lower troposphere. As a consequence, the position of the maximum of the eddy-driven westerlies tends to be controlled by the profile of the relatively sharp-peaked low-level PV flux, which is dominated by the eddy heat flux component of the Eliassen–Palm (EP) flux. Thus, the position of the eddy-driven surface westerlies may be inferred from the vertical EP flux coming out of the lower troposphere. The vertical EP flux can be parameterized by a measure of baroclinicity, whose latitudinal variations show a linear relationship with the meridional displacement of the eddy-driven westerlies and the storm track. This relationship still holds well within the single-jet regime, even when only the variation of static stability is taken into consideration in estimating the baroclinicity (the temperature gradient component of which is fixed). To the extent that the static stability is deterministically constrained by and hence can be predicted from the given SST conditions through a moist scaling for the midlatitude stratification, one may, given SST perturbations, predict which way the storm track and eddy-driven wind should shift with respect to a chosen reference climate state. The resultant anomaly-wise scaling turns out to be valid for both the idealized and comprehensive models, regardless of the details in the model physics. By corollary, it can be argued that the poleward shift of storm track found in the global warming simulations by fully coupled climate models may be attributed, at least partially, to the increase in the subtropical and midlatitude static stability with global warming.

2021 ◽  
Vol 78 (5) ◽  
pp. 1445-1463
Author(s):  
Jonathan L. Mitchell ◽  
Spencer A. Hill

AbstractWeak-temperature-gradient influences from the tropics and quasigeostrophic influences from the extratropics plausibly constrain the subtropical-mean static stability in terrestrial atmospheres. Because mean descent acting on this static stability is a leading-order term in the thermodynamic balance, a state-invariant static stability would impose constraints on the Hadley cells, which this paper explores in simulations of varying planetary rotation rate. If downdraft-averaged effective heating (the sum of diabatic heating and eddy heat flux convergence) too is invariant, so must be vertical velocity—an “omega governor.” In that case, the Hadley circulation overturning strength and downdraft width must scale identically—the cell can strengthen only by widening or weaken only by narrowing. Semiempirical scalings demonstrate that subtropical eddy heat flux convergence weakens with rotation rate (scales positively) while diabatic heating strengthens (scales negatively), compensating one another if they are of similar magnitude. Simulations in two idealized, dry GCMs with a wide range of planetary rotation rates exhibit nearly unchanging downdraft-averaged static stability, effective heating, and vertical velocity, as well as nearly identical scalings of the Hadley cell downdraft width and strength. In one, eddy stresses set this scaling directly (the Rossby number remains small); in the other, eddy stress and bulk Rossby number changes compensate to yield the same, ~Ω−1/3 scaling. The consistency of this power law for cell width and strength variations may indicate a common driver, and we speculate that Ekman pumping could be the mechanism responsible for this behavior. Diabatic heating in an idealized aquaplanet GCM is an order of magnitude larger than in dry GCMs and reanalyses, and while the subtropical static stability is insensitive to rotation rate, the effective heating and vertical velocity are not.


2021 ◽  
Author(s):  
Hyung-Ju Park ◽  
Kwang-Yul Kim

AbstractEffect of global warming on the sub-seasonal variability of the Northern Hemispheric winter (NDJFM) Pacific storm-track (PST) activity has been investigated. Previous studies showed that the winter-averaged PST has shifted northward and intensified, which was explained in terms of energy exchange with the mean field. Effect of global warming exhibits spatio-temporal heterogeneity with predominance over the Arctic region and in the winter season. Therefore, seasonal averaging may hide important features on sub-seasonal scales. In this study, distinct sub-seasonal response in storm track activities to winter Northern Hemispheric warming is analyzed applying cyclostationary empirical orthogonal function analysis to ERA5 data. The key findings are as follows. Change in the PST is not uniform throughout the winter; the PST shifts northward in early winter (NDJ) and intensifies in late winter (FM). In early winter, the combined effect of weakened baroclinic process to the south of the climatological PST and weakened barotropic damping to the north is responsible for the northward shift. In late winter, both processes contribute to the amplification of the PST. Further, change in baroclinic energy conversion is quantitatively dominated by eddy heat flux, whereas axial tilting of eddies is primarily responsible for change in barotropic energy conversion. A close relationship between anomalous eddy heat flux and anomalous boundary heating, which is largely determined by surface turbulent heat flux, is also demonstrated.


2016 ◽  
Vol 29 (18) ◽  
pp. 6597-6616 ◽  
Author(s):  
Sho Tanaka ◽  
Kazuaki Nishii ◽  
Hisashi Nakamura

Abstract The western Pacific (WP) pattern, characterized by north–south dipolar anomalies in pressure over the Far East and western North Pacific, is known as one of the dominant teleconnection patterns in the wintertime Northern Hemisphere. Composite analysis reveals that monthly height anomalies exhibit baroclinic structure with their phase lines tilting southwestward with height in the lower troposphere. The anomalies can thus yield not only a poleward heat flux across the climatological thermal gradient across the strong Pacific jet but also a westward heat flux across the climatological thermal gradient between the North Pacific and the cooler Asian continent. The resultant baroclinic conversion of available potential energy (APE) from the climatological-mean flow contributes most efficiently to the APE maintenance of the monthly WP pattern, acting against strong thermal damping effects by anomalous heat exchanges with the underlying ocean and anomalous precipitation in the subtropics and by the effect of anomalous eddy heat flux under modulated storm-track activity. Kinetic energy (KE) of the pattern is maintained through barotropic feedback forcing associated with modulated activity of transient eddies and the conversion from the climatological-mean westerlies, both of which act against frictional damping. The net feedback forcing by transient eddies is therefore not particularly efficient. The present study suggests that the WP pattern has a characteristic of a dynamical mode that can maintain itself through efficient energy conversion from the climatological-mean fields even without external forcing, including remote influence from the tropics.


2004 ◽  
Vol 61 (21) ◽  
pp. 2644-2652
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in variance or flux is determined. Remarkably, a single jet structure change completely characterizes the sensitivity of a chosen quadratic statistical quantity to modification of the mean jet in the sense that an arbitrary change in the jet influences a chosen statistical quantity in proportion to the projection of the change on this single optimal structure. The method used extends previous work in which storm track statistics were obtained using a stochastic model of jet turbulence.


2012 ◽  
Vol 25 (24) ◽  
pp. 8387-8393 ◽  
Author(s):  
Sarah M. Kang ◽  
Jian Lu

Abstract A scaling relationship is introduced to explain the seasonality in the outer boundary of the Hadley cell in both climatology and trend in the simulations of phase 3 of the Coupled Model Intercomparison Project (CMIP3). In the climatological state, the summer cell reaches higher latitudes than the winter cell since the Hadley cell in summer deviates more from the angular momentum conserving state, resulting in weaker upper-level zonal winds, which enables the Hadley cell to extend farther poleward before becoming baroclinically unstable. The Hadley cell can also reach farther poleward as the ITCZ gets farther away from the equator; hence, the Hadley cell extends farther poleward in solstices than in equinoxes. In terms of trend, a robust poleward expansion of the Hadley cell is diagnosed in all seasons with global warming. The scaling analysis indicates this is mostly due to an increase in the subtropical static stability, which pushes poleward the baroclinically unstable zone and hence the poleward edge of the Hadley cell. The relation between the trends in the Hadley cell edge and the ITCZ is also discussed.


2019 ◽  
Vol 32 (6) ◽  
pp. 1743-1760 ◽  
Author(s):  
B. J. Hoskins ◽  
K. I. Hodges

Abstract In this paper and Part II a comprehensive picture of the annual cycle of the Northern Hemisphere storm tracks is presented and discussed for the first time. It is based on both feature tracking and Eulerian-based diagnostics, applied to vorticity and meridional wind in the upper and lower troposphere. Here, the storm tracks, as diagnosed using both variables and both diagnostic techniques, are presented for the four seasons for each of the two levels. The oceanic storm tracks retain much of their winter mean intensity in spring with only a small change in their latitude. In the summer they are much weaker, particularly in the Pacific and are generally farther poleward. In autumn the intensities are larger again, comparable with those in spring, but the latitude is still nearer to that of summer. However, in the lower troposphere in the eastern ocean basins the tracking metrics show northern and southern tracks that change little with latitude through the year. The Pacific midwinter minimum is seen in upper-troposphere standard deviation diagnostics, but a richer picture is obtained using tracking. In winter there are high intensities over a wide range of latitudes in the central and eastern Pacific, and the western Pacific has high track density but weak intensity. In the lower troposphere all the diagnostics show that the strength of the Pacific and Atlantic storm tracks are generally quite uniform over the autumn–winter–spring period. There is a close relationship between the upper-tropospheric storm track, particularly that based on vorticity, and tropopause-level winds and temperature gradients. In the lower troposphere, in winter the oceanic storm tracks are in the region of the strong meridional SST gradients, but in summer they are located in regions of small or even reversed SST gradients. However, over North America the lower-tropospheric baroclinicity and the upstream portion of the Atlantic storm track stay together throughout the year.


2017 ◽  
Vol 74 (6) ◽  
pp. 1907-1922 ◽  
Author(s):  
Robert C. Wills ◽  
Xavier J. Levine ◽  
Tapio Schneider

Abstract The weakening of tropical overturning circulations is a robust response to global warming in climate models and observations. However, there remain open questions on the causes of this change and the extent to which this weakening affects individual circulation features such as the Walker circulation. The study presents idealized GCM simulations of a Walker circulation forced by prescribed ocean heat flux convergence in a slab ocean, where the longwave opacity of the atmosphere is varied to simulate a wide range of climates. The weakening of the Walker circulation with warming results from an increase in gross moist stability (GMS), a measure of the tropospheric moist static energy (MSE) stratification, which provides an effective static stability for tropical circulations. Baroclinic mode theory is used to determine changes in GMS in terms of the tropical-mean profiles of temperature and MSE. The GMS increases with warming, owing primarily to the rise in tropopause height, decreasing the sensitivity of the Walker circulation to zonally anomalous net energy input. In the absence of large changes in net energy input, this results in a rapid weakening of the Walker circulation with global warming.


2020 ◽  
Vol 33 (4) ◽  
pp. 1381-1404 ◽  
Author(s):  
Janni Yuval ◽  
Yohai Kaspi

AbstractGlobal warming projections show an anomalous temperature increase both at the Arctic surface and at lower latitudes in the upper troposphere. The Arctic amplification decreases the meridional temperature gradient, and simultaneously decreases static stability. These changes in the meridional temperature gradient and in the static stability have opposing effects on baroclinicity. The temperature increase at the upper tropospheric lower latitudes tends to increase the meridional temperature gradient and simultaneously increase static stability, which have opposing effects on baroclinicity as well. In this study, a dry idealized general circulation model with a modified Newtonian cooling scheme, which allows any chosen zonally symmetric temperature distribution to be simulated, is used to study the effect of Arctic amplification and lower-latitude upper-level warming on eddy activity. Due to the interplay between the static stability and meridional temperature gradient on atmospheric baroclinicity changes, and their opposing effect on atmospheric baroclinicity, it is found that both the Arctic amplification and lower-latitude upper-level warming could potentially lead to both decreases and increases in eddy activity, depending on the exact prescribed temperature modifications. Therefore, to understand the effect of global warming–like temperature trends on eddy activity, the zonally symmetric global warming temperature projections from state-of-the-art models are simulated. It is found that the eddy kinetic energy changes are dominated by the lower-latitude upper-level warming, which tends to weaken the eddy kinetic energy due to increased static stability. On the other hand, the eddy heat flux changes are dominated by the Arctic amplification, which tends to weaken the eddy heat flux at the lower levels.


2009 ◽  
Vol 22 (4) ◽  
pp. 880-904 ◽  
Author(s):  
Mototaka Nakamura ◽  
Shozo Yamane

Abstract Variability in the monthly mean flow and storm track in the North Atlantic basin is examined with a focus on the near-surface baroclinicity, B = Bxi + Byj. Dominant patterns of anomalous B found from empirical orthogonal function (EOF) analyses generally show patterns of shift and changes in the strength of B. Composited anomalies in the monthly mean wind at various pressure levels based on the signals in the EOFs display robust accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous Bx patterns exhibit, broadly speaking, structures anticipated from linear theories of baroclinic instabilities and suggest a tendency for anomalous wave fluxes to accelerate/decelerate the surface westerly accordingly. Atmospheric anomalies accompanying By anomalies have patterns different from those that accompany Bx anomalies but are as large as those found for Bx. Anomalies in the sea surface temperature (SST) found for the anomalous patterns of Bx often show large values of small spatial scales along the Gulf Stream (GS), indicating that a meridional shift in the position of the GS and/or changes in the heat transport by the GS may be responsible for the anomalous Bx and concomitant tropospheric and lower-stratospheric anomalies. Anomalies in the net surface heat flux, SST in preceding months, and meridional eddy heat flux in the lower troposphere support this interpretation.


2008 ◽  
Vol 21 (22) ◽  
pp. 5835-5851 ◽  
Author(s):  
Jian Lu ◽  
Gang Chen ◽  
Dargan M. W. Frierson

Abstract The change in the zonal mean atmospheric circulation under global warming is studied in comparison with the response to El Niño forcing, by examining the model simulations conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In contrast to the strengthening and contraction of the Hadley cell and the equatorward shift of the tropospheric zonal jets in response to El Niño, the Hadley cell weakens and expands poleward, and the jets move poleward in a warmed climate, despite the projected “El Niño–like” enhanced warming over the equatorial central and eastern Pacific. The hydrological impacts of global warming also exhibit distinct patterns over the subtropics and midlatitudes in comparison to the El Niño. Two feasible mechanisms are proposed for the zonal mean circulation response to global warming: 1) The increase in static stability of the subtropical and midlatitude troposphere, a robust result of the quasi-moist adiabatic adjustment to the surface warming, may stabilize the baroclinic eddy growth on the equatorward side of the storm tracks and push the eddy activity and the associated eddy-driven wind and subsidence poleward, leading to the poleward expansion of the Hadley cell and the shift of midlatitude jets; 2) the strengthening of the midlatitude wind at the upper troposphere and lower stratosphere, arguably a consequence of increases in the meridional temperature gradient near the tropopause level due to the tropospheric warming and tropopause slope, may increase the eastward propagation of the eddies emanating from the midlatitudes, and thus the subtropical region of wave breaking displaces poleward together with the eddy-driven circulation. Both mechanisms are somewhat, if not completely, distinct from those in response to the El Niño condition.


Sign in / Sign up

Export Citation Format

Share Document